1,932 research outputs found

    Numerical simulations on the motion of atoms travelling through a standing-wave light field

    Full text link
    The motion of metastable helium atoms travelling through a standing light wave is investigated with a semi-classical numerical model. The results of a calculation including the velocity dependence of the dipole force are compared with those of the commonly used approach, which assumes a conservative dipole force. The comparison is made for two atom guiding regimes that can be used for the production of nanostructure arrays; a low power regime, where the atoms are focused in a standing wave by the dipole force, and a higher power regime, in which the atoms channel along the potential minima of the light field. In the low power regime the differences between the two models are negligible and both models show that, for lithography purposes, pattern widths of 150 nm can be achieved. In the high power channelling regime the conservative force model, predicting 100 nm features, is shown to break down. The model that incorporates velocity dependence, resulting in a structure size of 40 nm, remains valid, as demonstrated by a comparison with quantum Monte-Carlo wavefunction calculations.Comment: 9 pages, 4 figure

    Communicating Uncertainty in Economic Evaluations:Verifying Optimal Strategies

    Get PDF
    Background. In cost-effectiveness analysis (CEA), it is common to compare a single, new intervention with 1 or more existing interventions representing current practice ignoring other, unrelated interventions. Sectoral CEAs, in contrast, take a perspective in which the costs and effectiveness of all possible interventions within a certain disease area or health care sector are compared to maximize health in a society given resource constraints. Stochastic league tables (SLT) have been developed to represent uncertainty in sectoral CEAs but have 2 shortcomings: 1) the probabilities reflect inclusion of individual interventions and not strategies and 2) data on robustness are lacking. The authors developed an extension of SLT that addresses these shortcomings. Methods. Analogous to non-probabilistic MAXIMIN decision rules, the uncertainty of the performance of strategies in sectoral CEAs may be judged with respect to worst possible outcomes, in terms of health effects obtainable within a given budget. Therefore, the authors assessed robustness of strategies likely to be optimal by performing optimization separately on all samples and on samples yielding worse than expected health benefits. The approach was tested on 2 examples, 1 with independent and 1 with correlated cost and effect data. Results. The method was applicable to the original SLT example and to a new example and provided clear and easily interpretable results. Identification of interventions with robust performance as well as the best performing strategies was straightforward. Furthermore, the robustness of strategies was assessed with a MAXIMIN decision rule. Conclusion. The SLT extension improves the comprehensibility and extends the usefulness of outcomes of SLT for decision makers. Its use is recommended whenever an SLT approach is considered

    Self-organized current transport through low angle grain boundaries in YBa2_2Cu3_3O7−δ_{7-\delta} thin films, studied magnetometrically

    Full text link
    The critical current density flowing across low angle grain boundaries in YBa2_2Cu3_3O7−δ_{7-\delta} thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO3_3 bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings with or without grain boundaries were obtained from a modified critical state model. For rings containing 5 and 7 degree boundaries, the magnetic response depends strongly on the field history, which arises in large part from self-field effects acting on the grain boundary.Comment: 8 pages, including 7 figure

    Sub-nanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation

    Get PDF
    A facility for sub-nanosecond time-resolved (pump-probe) infrared spectroscopy has been developed at the National Synchrotron Light Source of Brookhaven National Laboratory. A mode-locked Ti:sapphire laser produces 2 ps duration, tunable near-IR pump pulses synchronized to probe pulses from a synchrotron storage ring. The facility is unique on account of the broadband infrared from the synchrotron, which allows the entire spectral range from 2 cm-1 (0.25 meV) to 20,000 cm-1 (2.5 eV) to be probed. A temporal resolution of 200 ps, limited by the infrared synchrotron-pulse duration, is achieved. A maximum time delay of 170 ns is available without gating the infrared detector. To illustrate the performance of the facility, a measurement of electron-hole recombination dynamics for an HgCdTe semiconductor film in the far- and mid infrared range is presented.Comment: 11 pages with 9 figures include

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Puzzled by GRB 060218

    Full text link
    We study the optical-UV/X-ray spectral energy distribution of GRB 060218 during the prompt phase and during what seems to be the afterglow phase. The results are puzzling, since if the opt-UV and the X-ray emission belong to a single backbody (BB), then its luminosity is too large, and this BB cannot be interpreted as the signature of the shock breakout of the supernova. There are also serious problems in associating the emission expected by the supernova shock breakout with either the opt-UV or the X-ray emission. In the former case we derive too small ejecta velocities; in the latter case, on the contrary, the required velocity is too large, corresponding to the large radius of a BB required to peak close to the UV band. We then present what we think is the most conservative alternative explanation, namely a synchrotron spectrum, self-absorbed in the opt-UV and extending up to the X-ray band, where we observe the emission of the most energetic electrons, which are responsible for the exponential roll-over of the spectrum. The obtained fit can explain the entire spectrum except the BB observed in the X-rays, which must be a separate component. The puzzling feature of this interpretation is that the same model is required to explain the spectrum also at later times, up to 1e5 s, because the opt-UV emission remains constant in shape and also (approximately) in normalisation. In this case the observed X-ray flux is produced by self-Compton emission. Thus the prompt emission phase should last for ~1e5 s or more. Finally, we show that the BB observed in X-rays, up to 7000 seconds, can be photospheric emission from the cocoon or stellar material, energized by the GRB jet at radii comparable to the stellar radius (i.e. 1e10-1e11 cm), not very far from where this material becomes transparent (e.g. 1e12 cm).Comment: revised version accepted for publication in MNRAS (Letters
    • …
    corecore