143 research outputs found

    The use of a barley-based well to define cationic betaglucan to study mammalian cell toxicity associated with interactions with biological structures

    Get PDF
    Among potential macromolecule-based pharmaceuticals, polycations seem particularly interesting due to their proven antimicrobial properties and use as vectors in gene therapy. This makes an understanding of the mechanisms of these molecules’ interaction with living structures important, so the goal of this paper was to propose and carry out experiments that will allow us to characterize these phenomena. Of particular importance is the question of toxicity of such structures to mammalian cells and, in the work presented here, two lines, normal fibroblasts 3T3-L1 and A549 lung cancer, were used to determine this. In this work, three well-defined cationic derivatives of barley-derived betaglucans obtained in a reaction with glycidyltrimethylammonium chloride (BBGGTMAC) with different degrees of cationization (50, 70, and 100% per one glucose unit) and electrostatic charge were studied. The studies address interactions of these polymers with proteins (bovine serum proteins and BSA), nucleic acids (DNA), glycosaminoglycans (heparin), and biological membranes. The results described in this study make it possible to indicate that toxicity is most strongly influenced by interactions with biological membranes and is closely related to the electrostatic charge of the macromolecule. The presentation of this observation was the goal of this publication. This paper also shows, using fluorescently labeled variants of polymers, the penetration and impact on cell structure (only for the polymer with the highest substitution binding to cell membranes is observed) by using confocal and SEM (for the polymer with the highest degree of substitution, and the appearance of additional structures on the surface of the cell membrane is observed). The labeled polymers are also tools used together with dynamic light scattering and calorimetric titration to study their interaction with other biopolymers. As for the interactions with biological membranes, lipid Langmuir monolayers as model membrane systems were used

    Preliminary studies on the mechanism of antifungal activity of new cationic β-glucan derivatives obtained from oats and barley

    Get PDF
    [Image: see text] New chemical structures with antifungal properties are highly desirable from the point of view of modern pharmaceutical science, especially due to the increasingly widespread instances of drug resistance in the case of these diseases. One way to solve this problem is to use polymeric drugs, widely described as biocidal, positively charged macromolecules. In this work, we present the synthesis of new cationic β-glucan derivatives that show selective antifungal activity and at the same time low toxicity toward animal and human cells. Two β-glucans isolated from oats and barley and modified using glycidyltrimethylammonium chloride were obtained and evaluated for biocidal properties on the cells of mammals and pathogenic fungi and bacteria. These compounds were found to be nontoxic to fibroblast and bacterial cells but showed selective toxicity to certain species of filamentous fungi (Scopulariopsis brevicaulis) and yeasts (Cryptococcus neoformans). The most important aspect of this work is the attempt to explain the mechanisms of action of these compounds by studying their interaction with biological membranes. This was achieved by examining the interactions with model biological membranes representative of given families of microorganisms using Langmuir monolayers. The data obtained partly show correlations between the results for model systems and biological experiments and allow indicating that the selective antifungal activity of cationic β-glucans is related to their interaction with fungal biological membranes and partly lack of such interaction toward cells of other organisms. In addition, the obtained macromolecules were characterized by spectral methods (Fourier transform infrared (FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies) to confirm that the desired structure was obtained, and their degree of modification and molecular weights were determined

    The effect of β-sitosterol on the properties of cholesterol/phosphatidylcholine/ganglioside monolayers : the impact of monolayer fluidity

    No full text
    In this paper the influence of one of phytosterols, namely β-sitosterol on cholesterol (Chol)/phosphatidylcholine (PC)/ganglioside (GM3) monolayers was examined to find the correlation between the properties of model system and the effect of phytocompound. The studied monolayers differed in condensation and fluidity, which were modified by the structure of phosphatidylcholine. It was found that the incorporation of β-sitosterol into cholesterol/phosphatidylcholine/ganglioside films changes their morphology, condensation and interactions between the lipids. The substitution of cholesterol more strongly decreased the condensation and stability of the film containing PC molecules having monounsaturated chains than more densely packed monolayer composed of saturated phosphatidylcholine. However, thorough analysis of data obtained so far suggests that the magnitude of β-sitosterol effect is determined by the composition of the system rather than its fluidity itself. Moreover, the results collected herein correlate well with the findings that phytosterol more strongly inhibits the growth of cancer cells, which at a given proportion of cholesterol to phospholipids in membranes, have more unsaturated fatty acids within phospholipids molecules
    corecore