84 research outputs found

    Universality of the Kondo effect in quantum dots with ferromagnetic leads

    Get PDF
    We investigate quantum dots in clean single-wall carbon nanotubes with ferromagnetic PdNi-leads in the Kondo regime. In most odd Coulomb valleys the Kondo resonance exhibits a pronounced splitting, which depends on the tunnel coupling to the leads and an external magnetic field BB, and only weakly on gate voltage. Using numerical renormalization group calculations, we demonstrate that all salient features of the data can be understood using a simple model for the magnetic properties of the leads. The magnetoconductance at zero bias and low temperature depends in a universal way on gμB(BBc)/kBTKg \mu_B (B-B_c) / k_B T_K, where TKT_K is the Kondo temperature and BcB_c the external field compensating the splitting.Comment: 4 pages, 4 figure

    Measuring the Process Parameters of the IBAD Method

    Get PDF
    Chromium nitride films are known as good protective layers for against both corrosion and wear. These coatings have been studied in detail during recent years. Their protective capability strongly depends on the deposition conditions. A modern method for preparing chromium nitride is the IBAD (Ion Beam Assisted Deposition) method. The main parameter determining the composition and properties of the films prepared by the IBAD method is the arrival ratio of impinging nitrogen ions to chromium atoms. In order to calibrate the ion beam XY-mechanical scanner with a Faraday cup, a detector was designed and constructed. By mathematical processing of the data, the flux of the nitrogen atoms was found. To obtain the flux of the chromium atoms the RBS and Talystep methods were used. Now, on the basis of this data, we can perform CrNx, coatings with controlled composition and properties

    DLC Films Deposited by the DC PACVD Method

    Get PDF
    DLC (Diamond-Like Carbon) coatings have been suggested as protective surface layers against wear. However hard DLC coatings, especially those of greater thickness, have poor adhesion to substrates. We have used several ways to increase the adhesion of DLC coatings prepared by the PACVD (Plasma Assisted Chemical Vapour Deposition) method on steel substrates. One of these is the DC PACVD method for preparing DLC films

    Properties of Erbium and Ytterbium Doped Gallium Nitride Layers Fabricated by Magnetron Sputtering

    Get PDF
    We report about some properties of erbium and erbium/ytterbium doped gallium nitride (GaN) layers fabricated by magnetron sputtering onsilicon, quartz and Corning glass substrates. For fabricating GaN layers two types of targets were used - gallium in a stainless steel cup anda Ga2O3 target. Deposition was carried out in the Ar+N2 gas mixture. For erbium and ytterbium doping into GaN layers, erbium metallicpowder and ytterbium powder or Er2O3 and Yb2O3 pellets were laid on the top of the target. The samples were characterized by X-raydiffraction (XRD), photoluminescence spectra and nuclear analytical methods. While the use of a metallic gallium target ensured thedeposition of well-developed polycrystalline layers, the use of gallium oxide target provided GaN films with poorly developed crystals. Bothapproaches enabled doping with erbium and ytterbium ions during deposition, and typical emission at 1 530 nm due to the Er3+ intra-4f 4I13/2 → 4I15/2 transition was observed

    Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Get PDF
    We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD) and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm) and also using a semiconductor laser (λex=980 nm). Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm.&nbsp

    Optical Properties of Erbium and Erbium/Ytterbium Doped Polymethylmethacrylate

    Get PDF
    In this paper we report on the fabrication and properties of Er3 and Er3/Yb3 doped Polymethylmethacrylate (PMMA) layers. The reported layers were fabricated by spin coating on silicon or on quartz substrates. Infrared spectroscopy was used for an investigation of O-H stretching vibration. Measurement were made of the transmission spectra in the wavelength ranges from 350 to 700 nm for the Er3 doped samples and from 900 to 1040 nm for the Yb3 doped samples. The refractive indices were investigated in the spectral range from 300 to 1100 nm using optical ellipsometry and the photoluminescence spectra were measured in the infrared region

    Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes

    Full text link
    Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio

    Ultrasensitive force detection with a nanotube mechanical resonator

    Get PDF
    Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultra-sensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.Comment: Early version. To be published in Nature Nanotechnolog

    No more, no less - A formal model for serverless computing

    Get PDF
    Serverless computing, also known as Functions-as-a-Service, is a recent paradigm aimed at simplifying the programming of cloud applications. The idea is that developers design applications in terms of functions, which are then deployed on a cloud infrastructure. The infrastructure takes care of executing the functions whenever requested by remote clients, dealing automatically with distribution and scaling with respect to inbound traffic. While vendors already support a variety of programming languages for serverless computing (e.g. Go, Java, Javascript, Python), as far as we know there is no reference model yet to formally reason on this paradigm. In this paper, we propose the first formal programming model for serverless computing, which combines ideas from both the λ\lambda-calculus (for functions) and the π\pi-calculus (for communication). To illustrate our proposal, we model a real-world serverless system. Thanks to our model, we are also able to capture and pinpoint the limitations of current vendor technologies, proposing possible amendments
    corecore