52 research outputs found

    Light scattering and trapping in different thin film photovoltaic device

    Get PDF
    Light trapping in different thin film technologies is investigated in the context of the European integrated project ATHLET since it allows for thinner devices and thus for reduction of costs for absorber material preparation as well as for advanced multi-junction solar cells. In silicon technology, rough interfaces are typically introduced by roughening of substrates, transparent conducting oxides (TCOs) and/or reflectors at the back side to scatter the light into the absorber material. Well known rough TCOs, plasma-textured poly-Si as well as rough Cu(In,Ga)Se2 (CIGS) absorbers are used as source for light scattering in microcrystalline silicon solar cells and compared regarding their surface roughness. The results prove that CIGS and poly silicon solar cells provide efficient light scattering by the surface features of the rough absorber

    Chemical Etching of Zinc Oxide for Thin-Film Silicon Solar Cells

    Get PDF
    Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided

    Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Get PDF
    Sputtered and wet-chemically texture etched zinc oxide (ZnO) films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) on aluminum doped zinc oxide (ZnO:Al) films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length) is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF) and subsequently in diluted hydrochloric acid (HCl) these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells

    High rate reactive magnetron sputtering of ZnO:Al films from rotating metallic targets

    No full text
    Aluminum doped zinc oxide (ZnO:Al) films were reactively sputtered at a high discharge power from dual rotating metallic targets (Zn:Al = 99.5:0.5 wt.%). Deposition conditions like substrate temperature and working points were varied in order to prepare high quality ZnO:Al films. The influences on electrical and optical ZnO:Al thin film properties and surface texture before and after chemical etching in diluted HCl were studied in order to achieve light scattering films as front contact for solar cells. High dynamic deposition rate close to 90 nm m/min and high Hall mobility of up to 47 cm(2)/Vs were obtained. Transmission of more than 85% in the visible spectral range is obtained for all ZnO:Al films in this study. In addition, the absorption in near infrared region is low due to low doping. Surface texture after etching is usually much rougher than before. However, some films reveal after etching small surface features that are similar to initial surface features. We propose a relationship between initial and post-etched surface textures. (C) 2010 Elsevier B.V. All rights reserved

    The EBA and the Banking Union

    No full text
    • …
    corecore