635 research outputs found

    Hochschulökonomie und Bildungsplanung

    No full text

    Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3

    Full text link
    We have studied the chemical potential shift as a function of temperature in Nd1−x_{1-x}Srx_xMnO3_3 (NSMO) by measurements of core-level photoemission spectra. For ferromagnetic samples (x=0.4x=0.4 and 0.45), we observed an unusually large upward chemical potential shift with decreasing temperature in the low-temperature region of the ferromagnetic metallic (FM) phase. This can be explained by the double-exchange (DE) mechanism if the ege_g band is split by dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie temperature (TCT_C), which we attribute to the crossover from the DE to lattice-polaron regimes.Comment: 5 pages, 6 figure

    Density Effect on Hadronization of a Quark Plasma

    Full text link
    The hadronization cross section in a quark plasma at finite temperature and density is calculated in the framework of Nambu--Jona-lasinio model with explicit chiral symmetry breaking. In apposition to the familiar temperature effect, the quark plasma at high density begins to hadronize suddenly. It leads to a sudden and strong increase of final state pions in relativistic heavy ion collisions which may be considered as a clear signature of chiral symmetry restoration.Comment: Latex2e, 11 pages, 7 Postscript figures, submitted to Phys. Rev.

    Pseudogap of metallic layered nickelate R2-xSrxNiO4 (R=Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy

    Full text link
    We have investigated charge dynamics and electronic structures for single crystals of metallic layered nickelates, R2-xSrxNiO4 (R=Nd, Eu), isostructural to La2-xSrxCuO4. Angle-resolved photoemission spectroscopy on the barely-metallic Eu0.9Sr1.1NiO4 (R=Eu, x=1.1) has revealed a large hole surface of x2-y2 character with a high-energy pseudogap of the same symmetry and comparable magnitude with those of underdoped (x<0.1) cuprates, although the antiferromagnetic interactions are one order of magnitude smaller. This finding strongly indicates that the momentum-dependent pseudogap feature in the layered nickelate arises from the real-space charge correlation.Comment: 4 pages, 4 figures. Accepted in Physical Review Letter

    Hadron formation in high energy photonuclear reactions

    Get PDF
    We present a new method to account for coherence length effects in a semi-classical transport model. This allows us to describe photo- and electroproduction at large nuclei (A>12) and high energies using a realistic coupled channel description of the final state interactions that goes beyond simple Glauber theory. We show that the purely absorptive treatment of the final state interactions can lead to wrong estimates of color transparency and formation time effects in particle production. As an example, we discuss exclusive rho^0 photoproduction on Pb at a photon energy of 7 GeV as well as K^+ production in the photon energy range 1-7 GeV.Comment: 14 pages, 6 figures, version published in Phys. Rev.

    Recoil effects of photoelectrons in a solid

    Full text link
    High energy resolution C 1ss photoelectron spectra of graphite were measured at the excitation energy of 340, 870, 5950 and 7940eV using synchrotron radiation. On increasing the excitation energy, i.e., increasing kinetic energy of the photoelectron, the bulk origin C 1ss peak position shifts to higher binding energies. This systematic shift is due to the kinetic energy loss of the high-energy photoelectron by kicking the atom, and is clear evidence of the recoil effect in photoelectron emission. It is also observed that the asymmetric broadening increases for the higher energy photoelectrons. All these recoil effects can be quantified in the same manner as the M\"ossbauer effect for γ\gamma-ray emission from nuclei embedded in crystals.Comment: 4 pages, 2 figure

    Elastic Scattering Susceptibility of the High Temperature Superconductor Bi2Sr2CaCu2O8+x: A Comparison between Real and Momentum Space Photoemission Spectroscopies

    Full text link
    The joint density of states (JDOS) of Bi2Sr2CaCu2O8+x is calculated by evaluating the autocorrelation of the single particle spectral function A(k,omega) measured from angle resolved photoemission spectroscopy (ARPES). These results are compared with Fourier transformed (FT) conductance modulations measured by scanning tunneling microscopy (STM). Good agreement between the two experimental probes is found for two different doping values examined. In addition, by comparing the FT-STM results to the autocorrelated ARPES spectra with different photon polarization, new insight on the form of the STM matrix elements is obtained. This shines new light on unsolved mysteries in the tunneling data.Comment: Revised now available at: Phys. Rev. Lett. 96, 067005 (2006

    Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

    Full text link
    Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter

    Chemical potential shift and spectral weight transfer in Pr1−x_{1-x}Cax_xMnO3_3 revealed by photoemission spectroscopy

    Full text link
    We have studied the chemical potential shift and changes in the electronic density of states near the Fermi level (EFE_F) as a function of carrier concentration in Pr1−x_{1-x}Cax_xMnO3_3 (PCMO, 0.2≤x≤0.650.2 \le x \le 0.65) through the measurements of photoemission spectra. The results showed that the chemical potential shift was suppressed for x \agt 0.3, where the charge exchange (CE)-type antiferromagnetic charge-ordered state appears at low temperatures. We consider this observation to be related to charge self-organization such as stripe formation on a microscopic scale in this composition range. Together with the previous observation of monotonous chemical potential shift in La1−x_{1-x}Srx_xMnO3_3, we conclude that the tendency toward the charge self-organization increases with decreasing bandwidth. In the valence band, spectral weight of the Mn 3dd ege_g electrons in PCMO was transferred from ∼\sim 1 eV below EFE_F to the region near EFE_F with hole doping, leading to a finite intensity at EFE_F even in the paramagnetic insulating phase for x \agt 0.3, probably related with the tendency toward charge self-organization. The finite intensity at EFE_F in spite of the insulating transport behavior is consistent with fluctuations involving ferromagnetic metallic states.Comment: 6 pages, 5 figure

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1−x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres
    • …
    corecore