3 research outputs found

    On skillful decadal predictions of the subpolar North Atlantic

    Get PDF
    The North Atlantic is a crucial region for the prediction of weather and climate of North America and Europe and is the focus of this analysis. A skillful decadal prediction of the surface temperature was shown for several Earth system models, with the North Atlantic standing out as one region with higher predictive skill. This skill assessment concentrates on the rapid increase of the annual mean sea surface temperature of the North Atlantic subpolar gyre by about 1 K in the mid‑1990s and the adjacent years. This event-oriented analysis adds creditability to the decadal predictions and reveals the potential for improvements. The ability to simulate the observed sea surface temperature in the North Atlantic is quantified by using four versions of decadal predictions, which differ in model resolution, initialization technique, and the reanalysis data used in the assimilation run. While all four versions can reproduce the mid-1990s warming of the subpolar North Atlantic, the characteristics differ with lead time and version. The higher vertical resolution in the atmosphere and the higher horizontal resolution in the ocean improve the decadal prediction for longer lead times, and the anomaly initialization outperforms the full-field initialization for short lead times. The effect from the two different ocean reanalysis products on the predictive skill is strongest in the first two prediction years; a substantial cooling instead of the warming in the central North Atlantic reduces the skill score for the North Atlantic sea surface temperature in one version, whereas a too large interannual variability, compared with observations, lowers the skill score in the other version. The cooling patches are critical since the resulting gradients in sea surface temperature and their effect on atmospheric dynamics deviate from observations, and, moreover, hinder the skillful prediction of atmospheric variables

    Surface impacts and associated mechanisms of a moisture intrusion into the Arctic observed in mid-April 2020 during MOSAiC

    Get PDF
    Distinct events of warm and moist air intrusions (WAIs) from mid-latitudes have pronounced impacts on the Arctic climate system. We present a detailed analysis of a record-breaking WAI observed during the MOSAiC expedition in mid-April 2020. By combining Eulerian with Lagrangian frameworks and using simulations across different scales, we investigate aspects of air mass transformations via cloud processes and quantify related surface impacts. The WAI is characterized by two distinct pathways, Siberian and Atlantic. A moist static energy transport across the Arctic Circle above the climatological 90th percentile is found. Observations at research vessel Polarstern show a transition from radiatively clear to cloudy state with significant precipitation and a positive surface energy balance (SEB), i.e., surface warming. WAI air parcels reach Polarstern first near the tropopause, and only 1–2 days later at lower altitudes. In the 5 days prior to the event, latent heat release during cloud formation triggers maximum diabatic heating rates in excess of 20 K d-1. For some poleward drifting air parcels, this facilitates strong ascent by up to 9 km. Based on model experiments, we explore the role of two key cloud-determining factors. First, we test the role moisture availability by reducing lateral moisture inflow during the WAI by 30%. This does not significantly affect the liquid water path, and therefore the SEB, in the central Arctic. The cause are counteracting mechanisms of cloud formation and precipitation along the trajectory. Second, we test the impact of increasing Cloud Condensation Nuclei concentrations from 10 to 1,000 cm-3 (pristine Arctic to highly polluted), which enhances cloud water content. Resulting stronger longwave cooling at cloud top makes entrainment more efficient and deepens the atmospheric boundary layer. Finally, we show the strongly positive effect of the WAI on the SEB. This is mainly driven by turbulent heat fluxes over the ocean, but radiation over sea ice. The WAI also contributes a large fraction to precipitation in the Arctic, reaching 30% of total precipitation in a 9-day period at the MOSAiC site. However, measured precipitation varies substantially between different platforms. Therefore, estimates of total precipitation are subject to considerable observational uncertainty
    corecore