255 research outputs found

    Limitations of Near Edge X Ray Absorption Fine Structure as a tool for observing conduction bands in chalcopyrite solar cell heterojunctions

    Get PDF
    A non optimized interface band alignment in a heterojunctionbased solar cell can have negative eff ects on the current and voltage characteristics of the resulting device. To evaluate the use of Near Edge X ray Absorption Fine Structure spectroscopy NEXAFS as a means to measure the conduction band position, Cu In,Ga S2 chalcopyrite thin film surfaces were investigated as these form the absorber layer in solar cells with the structure ZnO Buffer Cu In,Ga S2 Mo Glass. The composition dependence of the structure of the conduction bands of CuInxGa1 xS2 has been revealed for x 0, 0.67 and 1 with both hard and soft NEXAFS and the resulting changes in conduction band off set at the junction with the bu ffer layer discussed. A comprehensive study of the positions of the absorption edges of all elements was carried out and the development of the conduction band with Ga content was observed, also with respect to calculated densities of state

    Investigation of Cu poor and Cu rich Cu In,Ga Se2 CdS interfaces using hard X ray photoelectron spectroscopy

    Get PDF
    Cu poor and Cu rich Cu In,Ga Se2 CIGSe absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe CdS interface accessible by hard X ray photo emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures 200 C, 300 C and 400 C . It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu poor surface after the 400 C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu rich surface after the same treatment at 400

    Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat

    Get PDF
    We present global distributions of carbon monoxide (CO) from the upper troposphere to the mesosphere observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. Vertically resolved volume mixing ratio profiles have been retrieved from 4.7 μm limb emission spectra under consideration of non-local thermodynamic equilibrium. The precision of individual CO profiles is typically 5–30 ppbv (15–40% for altitudes greater than 40 km and lower than 15 km and 30–90% within 15–40 km). Estimated systematic errors are in the order of 8–15%. Below 60 km, the vertical resolution is 4–7 km. The data set which covers 54 days from September 2003 to March 2004 has been derived with an improved retrieval version including (i) the retrieval of log(vmr), (ii) the consideration of illumination-dependent vibrational population gradients along the instrument's line of sight, and (iii) joint-fitted vmr horizontal gradients in latitudinal and longitudinal directions. A detailed analysis of spatially resolved CO distributions during the 2003/2004 Northern Hemisphere major warming event demonstrate the potential of MIPAS CO observations to obtain new information on transport processes during dynamical active episodes, particularly on those acting in the vertical. From the temporal evolution of zonally averaged CO abundances, we derived extraordinary polar winter descent velocities of 1200 m per day inside the recovered polar vortex in January 2004. Middle stratospheric CO abundances show a well established correlation with the chemical source CH<sub>4</sub>, particularly in the tropics. In the upper troposphere, a moderate CO decrease from September 2003 to March 2004 was observed. Upper tropospheric CO observations provide a detailed picture of long-range transport of polluted air masses and uplift events. MIPAS observations taken on 9–11 September 2003 confirm the trapping of convective outflow of polluted CO-rich air from Southeast Asia into the Asian monsoon anticyclone, which has been described in previous studies. Upper tropospheric CO plumes, observed by MIPAS on this day, were predominantly located in the Northern Hemisphere. Most of these plumes could be related to Southeast Asian pollution by means of backward trajectory calculations. During 20–22 October, southern hemispheric biomass burning was the most likely source of the major CO plumes observed over the Southern Atlantic and Indian Ocean

    Seasonal and interannual variations of HCN amounts in the upper troposphere and lower stratosphere observed by MIPAS

    Get PDF
    We present a HCN climatology of the years 2002-2012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite, with the main focus on biomass burning signatures in the upper troposphere and lower stratosphere. HCN is an almost unambiguous tracer of biomass burning with a tropospheric lifetime of 5-6 months and a stratospheric lifetime of about 2 years. The MIPAS climatology is in good agreement with the HCN distribution obtained by the spaceborne ACE-FTS experiment and with airborne in situ measurements performed during the INTEX-B campaign. The HCN amounts observed by MIPAS in the southern tropical and subtropical upper troposphere have an annual cycle peaking in October-November, i.e. 1-2 months after the maximum of southern hemispheric fire emissions. The probable reason for the time shift is the delayed onset of deep convection towards austral summer. Because of overlap of varying biomass burning emissions from South America and southern Africa with sporadically strong contributions from Indonesia, the size and strength of the southern hemispheric plume have considerable interannual variations, with monthly mean maxima at, for example, 14 km between 400 and more than 700 pptv. Within 1-2 months after appearance of the plume, a considerable portion of the enhanced HCN is transported southward to as far as Antarctic latitudes. The fundamental period of HCN variability in the northern upper troposphere is also an annual cycle with varying amplitude, which in the tropics peaks in May after and during the biomass burning seasons in northern tropical Africa and southern Asia, and in the subtropics peaks in July due to trapping of pollutants in the Asian monsoon anticyclone (AMA). However, caused by extensive biomass burning in Indonesia and by northward transport of part of the southern hemispheric plume, northern HCN maxima also occur around October/November in several years, which leads to semi-annual cycles. There is also a temporal shift between enhanced HCN in northern low and mid- to high latitudes, indicating northward transport of pollutants. Due to additional biomass burning at mid- and high latitudes, this meridional transport pattern is not as clear as in the Southern Hemisphere. Upper tropospheric HCN volume mixing ratios (VMRs) above the tropical oceans decrease to below 200 pptv, presumably caused by ocean uptake, especially during boreal winter and spring. The tropical stratospheric tape recorder signal with an apparently biennial period, which was detected in MLS and ACE-FTS data from mid-2004 to mid-2007, is corroborated by MIPAS HCN data. The tape recorder signal in the whole MIPAS data set exhibits periodicities of 2 and 4 years, which are generated by interannual variations in biomass burning. The positive anomalies of the years 2003, 2007 and 2011 are caused by succession of strongly enhanced HCN from southern hemispheric and Indonesian biomass burning in boreal autumn and of elevated HCN from northern tropical Africa and the AMA in subsequent spring and summer. The anomaly of 2005 seems to be due to springtime emissions from tropical Africa followed by release from the summertime AMA. The vertical transport time of the anomalies is 1 month or less between 14 and 17 km in the upper troposphere and 8-11 months between 17 and 25 km in the lower stratosphere

    Retrieval of temperature, H₂O, O₃, HNO₃, CH₄, N₂O, ClONO₂ and ClO from MIPAS reduced resolution nominal mode limb emission measurements

    Get PDF
    Retrievals of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced spectral resolution nominal mode limb emission measurements outperform retrievals from respective full spectral resolution measurements both in terms of altitude resolution and precision. The estimated precision (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 0.5–1.4K and 2–3.5 km for temperature between 10 and 50 km altitude, and 5–6%, 2–4 km for H2O below 30 km altitude, 4– 5%, 2.5–4.5 km for O3 between 15 and 40 km altitude, 3– 8%, 3–5 km for HNO3 between 10 and 35 km altitude, 5– 8%, 2–3 km for CH4 between 15 and 35 km altitude, 5–10%, 3 km for N2O between 15 and 35 km altitude, 8–14%, 2.5– 9 km for ClONO2 below 40 km, and larger than 35%, 3– 7 km for ClO in the lower stratosphere. As for the full spectral resolution measurements, the reduced spectral resolution nominal mode horizontal sampling (410 km) is coarser than the horizontal smoothing (often below 400 km), depending on species, altitude and number of tangent altitudes actually used for the retrieval. Thus, aliasing might be an issue even in the along-track domain. In order to prevent failure of convergence, it was found to be essential to consider horizontal temperature gradients during the retrieval

    HOCl chemistry in the Antarctic stratospheric vortex 2002, as observed with the Michelson interferometer for passive atmospheric sounding (MIPAS)

    Get PDF
    In the 2002 Antarctic polar vortex enhanced HOCl mixing ratios were detected by the Michelson Interferometer for Passive Atmospheric Sounding both at altitudes of around 35 km (1000K potential temperature), where HOCl abundances are ruled by gas phase chemistry and at around 18–24 km (475–625 K), which belongs to the altitude domain where heterogeneous chlorine chemistry is relevant. At altitudes of 33 to 40 km polar vortex HOCl mixing ratios were found to be around 0.14 ppbv as long as the polar vortex was intact, centered at the pole, and thus received relatively little sunlight. This is the altitude region where in midlatitudinal and tropic atmospheres peak HOCl mixing ratios significantly above 0.2 ppbv (in terms of daily mean values) are observed. After deformation and displacement of the polar vortex in the course of a major warming, ClO-rich vortex air was more exposed to sunlight, where enhanced HOx abundances led to largely increased HOCl mixing ratios (up to 0.3 ppbv), exceeding typical midlatitudinal and tropical amounts significantly. The HOCl increase was preceded by an increase of ClO. Model runs could reproduce these measurements only when the Stimpfle et al. (1979) rate constant for the reaction ClO+HO2→HOCl+O2 was used but not with the current JPL recommendation. At an altitude of 24 km, HOCl mixing ratios of up to 0.15 ppbv were detected. This HOCl enhancement, which is already visible in 18 September data, is attributed to heterogeneous chemistry, which is in agreement with observations of polar stratospheric clouds. The measurements were compared to a model run where no polar stratospheric clouds appeared during the observation period. The fact that HOCl still was produced in the model run suggests that a significant part of HOCl was generated from ClO rather than directly via heterogeneous reaction. Excess ClO, lower ClONO2 and earlier loss of HOCl in the measurements are attributed to ongoing heterogeneous chemistry which is not reproduced by the model. On 11 October, polar vortex mean daytime mixing ratios were only 0.03 ppbv

    Retrieval of global upper tropospheric and stratospheric formaldehyde (H2CO) distributions from high-resolution MIPAS-Envisat spectra

    Get PDF
    The Fourier transform spectrometer MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) on Envisat measures infrared emission of the Earth's atmosphere in a limb viewing mode. High spectral resolution measurements of MIPAS are sensitive to formaldehyde from the upper troposphere to the stratopause. Single profile retrievals of formaldehyde are dominated by a 60% noise error; however zonal mean values for 30 days of data during 8 September 2003 and 1 December 2003 reduces this error by a factor of 20 or more. The number of degrees of freedom for single profile retrieval ranges from 2 to 4.5 depending on latitude and number of cloud-free tangent altitudes. In the upper tropical troposphere zonal mean values of about 70 parts per trillion by volume (pptv) were found, which have been attributed to biomass burning emissions. In the stratosphere, formaldehyde values are determined by photochemical reactions. In the upper tropical stratosphere, formaldehyde zonal mean maximum values can reach 130 pptv. Diurnal variations in this region can be up to 50 pptv. Comparisons with other satellite instruments show generally good agreement in the region of upper troposphere and lower stratosphere as well as in the upper stratosphere
    • …
    corecore