2 research outputs found

    Is there a relation between EEG-slow waves and memory dysfunction in epilepsy? A critical appraisal.

    No full text
    Is there a relationship between peri-ictal slow waves, loss of consciousness, memory, and slow wave sleep, in patients with different forms of epilepsy? We hypothesize that mechanisms which result in peri-ictal slow wave activity as detected by the electroencephalogram could negatively affect memory processes.Slow waves (≤ 4 Hz) can be found in seizures with impairment of consciousness and also occur in focal seizures without impairment of consciousness but with inhibited access to memory functions. Peri-ictal slow waves are regarded as dysfunctional and are probably caused by mechanisms which are essential to disturb the consolidation of memory entries in these patients. This is in strong contrast to physiological slow wave activity during deep sleep, which is thought to group memory-consolidating fast oscillatory activity.In patients with epilepsy, slow waves may not only correlate with the peri-ictal clouding of consciousness, but could be the epiphenomenon of mechanisms which interfere with normal brain function in a wider range. These mechanisms may have transient impacts on memory, such as temporary inhibition of memory systems, altered patterns of hippocampal-neocortical interactions during slow wave sleep, or disturbed cross-frequency coupling of slow and fast oscillations. In addition, repeated tonic-clonic seizures over the years in uncontrolled chronic epilepsy may cause a progressive cognitive decline.This hypothesis can only be assessed in long term prospective studies. These studies could disentangle the reversible short-term impacts of seizures, and the impacts of chronic uncontrolled seizures. Chronic uncontrolled seizures lead to irreversible memory impairment. In contrast, short term impacts do not necessarily lead to a progressive cognitive decline but result in significantly impaired peri-ictal memory performance

    High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis.

    Get PDF
    High frequency oscillations (HFOs) are estimated as a potential marker for epileptogenicity. Current research strives for valid evidence that these HFOs could aid the delineation of the to-be resected area in patients with refractory epilepsy and improve surgical outcomes. In the present meta-analysis, we evaluated the relation between resection of regions from which HFOs can be detected and outcome after epilepsy surgery.We conducted a systematic review of all studies that related the resection of HFO-generating areas to postsurgical outcome. We related the outcome (seizure freedom) to resection ratio, that is, the ratio between the number of channels on which HFOs were detected and, among these, the number of channels that were inside the resected area. We compared the resection ratio between seizure free and not seizure free patients.In total, 11 studies were included. In 10 studies, ripples (80-200 Hz) were analyzed, and in 7 studies, fast ripples (>200 Hz) were studied. We found comparable differences (dif) and largely overlapping confidence intervals (CI) in resection ratios between outcome groups for ripples (dif=0.18; CI: 0.10-0.27) and fast ripples (dif=0.17; CI: 0.01-0.33). Subgroup analysis showed that automated detection (dif=0.22; CI: 0.03-0.41) was comparable to visual detection (dif=0.17; CI: 0.08-0.27). Considering frequency of HFOs (dif=0.24; CI: 0.09-0.38) was related more strongly to outcome than considering each electrode that was showing HFOs (dif=0.15; CI=0.03-0.27).The effect sizes found in the meta-analysis are small but significant. Automated detection and application of a detection threshold in order to detect channels with a frequent occurrence of HFOs is important to yield a marker that could be useful in presurgical evaluation. In order to compare studies with different methodological approaches, detailed and standardized reporting is warranted
    corecore