28 research outputs found

    Midbrain–hindbrain malformations in patients with malformations of cortical development and epilepsy: A series of 220 patients

    Get PDF
    SummaryMidbrain–hindbrain malformations (MHM) may coexist with malformations of cortical development (MCD). This study represents a first attempt to investigate the spectrum of MHM in a large series of patients with MCD and epilepsy. We aimed to explore specific associations between MCD and MHM and to compare two groups of patients: MCD with MHM (wMHM) and MCD without MHM (w/oMHM) with regard to clinical and imaging features.Two hundred and twenty patients (116 women/104 men, median age 28 years, interquartile range 20–44 years at the time of assessment) with MCD and epilepsy were identified at the Departments of Neurology and Pediatrics, Innsbruck Medical University, Austria. All underwent high-resolution MRIs (1.5-T) between 01.01.2002 and 31.12.2011. Midbrain–hindbrain structures were visually assessed by three independent raters.MHM were seen in 17% (38/220) of patients. The rate of patients wMHM and w/oMHM differed significantly (p=0.004) in three categories of MCD (category I – to abnormal neuronal proliferation; category II – to abnormal neuronal migration; and category III – due to abnormal neuronal late migration/organization): MCD due to abnormal neuronal migration (31%) and organization (23%) were more commonly associated with MHM compared to those with MCD due to abnormal neuronal proliferation (9%). Extensive bilateral MCD were seen more often in patients wMHM compared to those w/oMHM (63% vs. 36%; p=0.004). In wMHM group compared to w/oMHM group there were higher rates of callosal dysgenesis (26% vs. 4%; p<0.001) and hippocampal abnormalities (52% vs. 27%; p<0.001). Patients wMHM were younger (median 25 years vs. 30 years; p=0.010) at the time of assessment and had seizure onset at an earlier age (median 5 years vs. 12 years; p=0.043) compared to those w/oMHM. Patients wMHM had higher rates of learning disability (71% vs. 38%; p<0.001), delayed developmental milestones (68% vs. 35%; p<0.001) and neurological deficits (66% vs. 47%; p=0.049) compared to those w/oMHM.The groups (wMHM and w/oMHM) did not differ in their response to antiepileptic treatment, seizure outcome, seizure types, EEG abnormalities and rate of status epilepticus. Presence of MHM in patients with MCD and epilepsy is associated with severe morphological and clinical phenotypes

    Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic PAH

    Get PDF
    Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl- channel TMEM16A gene.We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing PAH.We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary arterial smooth muscle cells (PASMC). In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl- current in PASMC (n=9-10). These cells were depolarised and could be repolarized by TMEM16A inhibitors or knock-down experiments (n=6-10). Inhibition/knock-down of TMEM16A reduced proliferation of IPAH-PASMC (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMC produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established PH.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to achieve reverse remodelling in PAH

    Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data

    Get PDF
    The quantification of vegetation height for the circumpolar Arctic tundra biome is of interest for a wide range of applications, including biomass and habitat studies as well as permafrost modelling in the context of climate change. To date, only indices from multispectral data have been used in these environments to address biomass and vegetation changes over time. The retrieval of vegetation height itself has not been attempted so far over larger areas. Synthetic Aperture Radar (SAR) holds promise for canopy modeling over large extents, but the high variability of near-surface soil moisture during the snow-free season is a major challenge for application of SAR in tundra for such a purpose. We hypothesized that tundra vegetation height can be derived from multispectral indices as well as from C-band SAR data acquired in winter (close to zero liquid water content). To test our hypothesis, we used C-band SAR data from Sentinel-1 and multi-spectral data from Sentinel-2. Results show that vegetation height can be derived with an RMSE of 44 cm from Normalized Difference Vegetation Index (NDVI) and 54 cm from Tasseled Cap Wetness index (TC). Retrieval from C-band SAR shows similar performance, but C-VV is more suitable than C-HH to derive vegetation height (RMSEs of 48 and 56 cm respectively). An exponential relationship with in situ height was evident for all tested parameters (NDVI, TC, C-VV and C-HH) suggesting that the C-band SAR and multi-spectral approaches possess similar capabilities including tundra biomass retrieval. Errors might occur in specific settings as a result of high surface roughness, high photosynthetic activity in wetlands or high snow density. We therefore introduce a method for combined use of Sentinel-1 and Sentinel-2 to address the ambiguities related to Arctic wetlands and barren rockfields. Snow-related deviations occur within tundra fire scars in permafrost areas in the case of C-VV use. The impact decreases with age of the fire scar, following permafrost and vegetation recovery. The evaluation of masked C-VV retrievals across different regions, tundra types and sources (in situ and circumpolar vegetation community classification from satellite data) suggests pan-Arctic applicability to map current conditions for heights up to 160 cm. The presented methodology will allow for new applications and provide advanced insight into changing environmental conditions in the Arctic

    Endothelial dysfunction in adipose triglyceride lipase deficiency

    Get PDF
    AbstractSystemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease

    The ILAE definition of drug resistant epilepsy and its clinical applicability compared with “older” established definitions

    No full text
    Background. Early identification of potential epilepsy surgery candidates is essential to the treatment process. Aim. To evaluate the clinical applicability of the ILAE definition of drug resistant epilepsy and its potential in identifying surgical candidates earlier compared to three established “older” definitions of drug resistant epilepsy. Material and Methods. Retrospective analysis of 174 patients who underwent epilepsy surgery between 1998 and 2009. Clinical factors and course of disease were extracted from patients' charts. Drug resistant epilepsy was classified according to four definitions and the time until fulfillment of criteria compared. Results. Mean time to fulfillment of criteria of drug resistant epilepsy ranged from 11.8 (standard deviation (SD) 9.8) to 15.6 years (SD 11.3). Time to drug resistance was significantly longer applying the only definition, requiring failure of three antiepileptic drugs (AEDs) (Canada definition), whereas time to fulfillment of all other definitions did not differ. Fifty percent of all patients experienced a seizure free period of 1 year prior to being classified as drug resistant, 13% entered another 1-year remission after fulfilling any criteria for drug resistance. Conclusion. We conclude that the ILAE definition identifies drug resistant epilepsy, with similar latency like two of three formerly used definitions. It is an easy applicable tool to minimize the delay of referral to a specialized center. Intermittent remissions delay assessment of drug resistance for all definitions and 13% of patients enter a remission despite established drug resistance.(VLID)177180
    corecore