441 research outputs found

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Entropy and Correlations in Lattice Gas Automata without Detailed Balance

    Full text link
    We consider lattice gas automata where the lack of semi-detailed balance results from node occupation redistribution ruled by distant configurations; such models with nonlocal interactions are interesting because they exhibit non-ideal gas properties and can undergo phase transitions. For this class of automata, mean-field theory provides a correct evaluation of properties such as compressibility and viscosity (away from the phase transition), despite the fact that no H-theorem strictly holds. We introduce the notion of locality - necessary to define quantities accessible to measurements - by treating the coupling between nonlocal bits as a perturbation. Then if we define operationally ``local'' states of the automaton - whether the system is in a homogeneous or in an inhomogeneous state - we can compute an estimator of the entropy and measure the local channel occupation correlations. These considerations are applied to a simple model with nonlocal interactions.Comment: 13 pages, LaTeX, 5 PostScript figures, uses psfig. Submitted to Int. J. Mod. Phys.

    Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine

    Full text link
    We demonstrate how three-dimensional fluid flow simulations can be carried out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for cellular-automata computations. The principal algorithmic innovation is the use of a lattice-gas model with a 16-bit collision operator that is specially adapted to the machine architecture. It is shown how the collision rules can be optimized to obtain a low viscosity of the fluid. Predictions of the viscosity based on a Boltzmann approximation agree well with measurements of the viscosity made on CAM-8. Several test simulations of flows in simple geometries -- channels, pipes, and a cubic array of spheres -- are carried out. Measurements of average flux in these geometries compare well with theoretical predictions.Comment: 19 pages, REVTeX and epsf macros require

    Probing the local dynamics of periodic orbits by the generalized alignment index (GALI) method

    Full text link
    As originally formulated, the Generalized Alignment Index (GALI) method of chaos detection has so far been applied to distinguish quasiperiodic from chaotic motion in conservative nonlinear dynamical systems. In this paper we extend its realm of applicability by using it to investigate the local dynamics of periodic orbits. We show theoretically and verify numerically that for stable periodic orbits the GALIs tend to zero following particular power laws for Hamiltonian flows, while they fluctuate around non-zero values for symplectic maps. By comparison, the GALIs of unstable periodic orbits tend exponentially to zero, both for flows and maps. We also apply the GALIs for investigating the dynamics in the neighborhood of periodic orbits, and show that for chaotic solutions influenced by the homoclinic tangle of unstable periodic orbits, the GALIs can exhibit a remarkable oscillatory behavior during which their amplitudes change by many orders of magnitude. Finally, we use the GALI method to elucidate further the connection between the dynamics of Hamiltonian flows and symplectic maps. In particular, we show that, using for the computation of GALIs the components of deviation vectors orthogonal to the direction of motion, the indices of stable periodic orbits behave for flows as they do for maps.Comment: 17 pages, 9 figures (accepted for publication in Int. J. of Bifurcation and Chaos

    Escaping from nonhyperbolic chaotic attractors

    Full text link
    We study the noise-induced escape process from chaotic attractors in nonhyperbolic systems. We provide a general mechanism of escape in the low noise limit, employing the theory of large fluctuations. Specifically, this is achieved by solving the variational equations of the auxiliary Hamiltonian system and by incorporating the initial conditions on the chaotic attractor unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map and can be implemented straightforwardly to experimental data.Comment: replaced with published versio

    Core Collapse via Coarse Dynamic Renormalization

    Full text link
    In the context of the recently developed "equation-free" approach to computer-assisted analysis of complex systems, we extract the self-similar solution describing core collapse of a stellar system from numerical experiments. The technique allows us to side-step the core "bounce" that occurs in direct N-body simulations due to the small-N correlations that develop in the late stages of collapse, and hence to follow the evolution well into the self-similar regime.Comment: 5 pages, 3 figure

    Quadratic Volume Preserving Maps

    Full text link
    We study quadratic, volume preserving diffeomorphisms whose inverse is also quadratic. Such maps generalize the Henon area preserving map and the family of symplectic quadratic maps studied by Moser. In particular, we investigate a family of quadratic volume preserving maps in three space for which we find a normal form and study invariant sets. We also give an alternative proof of a theorem by Moser classifying quadratic symplectic maps.Comment: Ams LaTeX file with 4 figures (figure 2 is gif, the others are ps

    Nambu-Hamiltonian flows associated with discrete maps

    Full text link
    For a differentiable map (x1,x2,...,xn)→(X1,X2,...,Xn)(x_1,x_2,..., x_n)\to (X_1,X_2,..., X_n) that has an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of the initial value, say xnx_n, of the map plays the role of time variable while the others remain fixed. We present various examples which exhibit the map-flow correspondence.Comment: 19 page

    Statistical Mechanics of the Fluctuating Lattice Boltzmann Equation

    Get PDF
    We propose a new formulation of the fluctuating lattice Boltzmann equation that is consistent with both equilibrium statististical mechanics and fluctuating hydrodynamics. The formalism is based on a generalized lattice-gas model, with each velocity direction occupied by many particles. We show that the most probable state of this model corresponds to the usual equilibrium distribution of the lattice Boltzmann equation. Thermal fluctuations about this equilibrium are controlled by the mean number of particles at a lattice site. Stochastic collision rules are described by a Monte Carlo process satisfying detailed balance. This allows for a straightforward derivation of discrete Langevin equations for the fluctuating modes. It is shown that all non-conserved modes should be thermalized, as first pointed out by Adhikari et al.; any other choice violates the condition of detailed balance. A Chapman-Enskog analysis is used to derive the equations of fluctuating hydrodynamics on large length and time scales; the level of fluctuations is shown to be thermodynamically consistent with the equation of state of an isothermal, ideal gas. We believe this formalism will be useful in developing new algorithms for thermal and multiphase flows.Comment: Submitted to Physical Review E-11 pages Corrected Author(s) field on submittal for

    Interference phenomena in scalar transport induced by a noise finite correlation time

    Full text link
    The role played on the scalar transport by a finite, not small, correlation time, Ď„u\tau_u, for the noise velocity is investigated, both analytically and numerically. For small Ď„u\tau_u's a mechanism leading to enhancement of transport has recently been identified and shown to be dominating for any type of flow. For finite non-vanishing Ď„u\tau_u's we recognize the existence of a further mechanism associated with regions of anticorrelation of the Lagrangian advecting velocity. Depending on the extension of the anticorrelated regions, either an enhancement (corresponding to constructive interference) or a depletion (corresponding to destructive interference) in the turbulent transport now takes place.Comment: 8 pages, 3 figure
    • …
    corecore