26 research outputs found

    Instantaneous coronary collateral function during supine bicycle exercise

    Get PDF
    Aims The instantaneous response of the collateral circulation to isometric physical exercise in patients with non-occlusive coronary artery disease (CAD) is not known. Methods and results Thirty patients (age 59 ± 9 years) undergoing percutaneous coronary intervention because of stable CAD were included in the study. Collateral function was determined before and during the last minute of a 6 min protocol of supine bicycle exercise during radial artery access coronary angiography. Collateral flow index (CFI, no unit) was determined as the ratio of mean distal coronary occlusive to mean aortic pressure both subtracted by central venous pressure. To avoid confounding due to recruitment of coronary collaterals by repetitive balloon occlusions, patients were randomly assigned to a group ‘rest first' with CFI measurement during rest followed by CFI during exercise, and to a group ‘exercise first' with antecedent CFI measurement during exercise before CFI at rest. Simultaneously, coronary collateral conductance (occlusive myocardial blood flow per aorto-coronary pressure drop) was determined by myocardial contrast echocardiography in the last 10 consecutive patients. Overall, CFI increased from 0.168 ± 0.118 at rest to 0.262 ± 0.166 during exercise (P = 0.0002). The exercise-induced change in CFI did not differ statistically in the two study groups. Exercise-induced CFI reserve (CFI during exercise divided by CFI at rest) was 2.2 ± 1.8. Overall, rest to peak bicycle exercise change of coronary collateral conductance was from 0.010 ± 0.010 to 1.109 ± 0.139 mL/min/100 mmHg (P < 0.0001); the respective change was similar in both groups. Conclusion In patients with non-occlusive CAD, collateral flow instantaneously doubles during supine bicycle exercise as compared with the resting state. ClinicalTrials.gov Identifier: NCT0094705

    Instantaneous coronary collateral function during supine bicycle exercise

    Get PDF
    The instantaneous response of the collateral circulation to isometric physical exercise in patients with non-occlusive coronary artery disease (CAD) is not known

    Prognostic relevance of coronary collateral function: confounded or causal relationship?

    No full text
    OBJECTIVE To expand the limited information on the prognostic impact of quantitatively obtained collateral function in patients with coronary artery disease (CAD) and to estimate causality of such a relation. DESIGN Prospective cohort study with long-term observation of clinical outcome. SETTING University Hospital. PATIENTS One thousand one hundred and eighty-one patients with chronic stable CAD undergoing 1771 quantitative, coronary pressure-derived collateral flow index measurements, as obtained during a 1-min coronary balloon occlusion (CFI is the ratio between mean distal coronary occlusive pressure and mean aortic pressure both subtracted by central venous pressure). Subgroup of 152 patients included in randomised trials on the longitudinal effect of different arteriogenic protocols on CFI. INTERVENTIONS Collection of long-term follow-up information on clinical outcome. MAIN OUTCOME MEASURES All-cause mortality and major adverse cardiac events. RESULTS Cumulative 15-year survival rate was 48% in patients with CFI<0.25 and 65% in the group with CFI≄0.25 (p=0.0057). Cumulative 10-year survival rate was 75% in patients without arteriogenic therapy and 88% (p=0.0482) in the group with arteriogenic therapy and showing a significant increase in CFI at follow-up. By proportional hazard analysis, the following variables predicted increased all-cause mortality: age, low CFI, left ventricular end-diastolic pressure and number of vessels with CAD. CONCLUSIONS A well-functioning coronary collateral circulation independently predicts lowered mortality in patients with chronic CAD. This relation appears to be causal, because augmented collateral function by arteriogenic therapy is associated with prolonged survival

    Safety of diagnostic balloon occlusion in normal coronary arteries

    No full text
    Diagnostic coronary balloon occlusion (CBO) is mandatory for collateral function assessment, during angioscopy and optical coherence imaging, and when using certain coronary protection devices against emboli. Thus far, the safety of diagnostic CBO regarding procedural and long-term complications in normal coronary arteries has not been studied. In 316 patients, diagnostic CBO was performed for collateral function measurement in 426 angiographically normal vessels. The angioplasty balloon was inflated for 60 to 120 seconds using inflation pressures of 1 to 3 atm, followed by control angiography during and after CBO. Patients were divided into groups with entirely normal (n = 133) and partially normal (n = 183) vessels. Primary end points were procedural and long-term complications. De novo stenosis development was assessed by quantitative coronary angiography in 35% of the patients. Secondary end points were cardiac events at 5 years of follow-up. Procedural complications occurred in 1 patient (0.2%). In 150 repeat angiographic procedures in 92 patients (follow-up duration 10 +/- 15 months), quantitative coronary angiography revealed no difference in percentage diameter narrowing between baseline and follow-up (4.1% vs 3.9%, p = 0.69). During follow-up periods of 14 and 72 months, respectively, a new stenotic lesion was detected in 1 patient in each group (1.3%). Major cardiac events and percutaneous coronary intervention for stable angina were less frequent in the group with entirely normal than with partially normal vessels (0.8% vs 5.5%, p = 0.02, and 0.8% vs 18%, p <0.0001). In conclusion, low-inflation pressure diagnostic CBO in angiographically normal coronary arteries bears a minimal risk for procedural and long-term complications and can therefore be regarded as a safe procedure

    Microvascular response to metabolic and pressure challenge in the human coronary circulation

    No full text
    In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range

    Effects of coronary sinus occlusion on myocardial ischaemia in humans: role of coronary collateral function

    No full text
    OBJECTIVE This study tested the hypotheses that intermittent coronary sinus occlusion (iCSO) reduces myocardial ischaemia, and that the amount of ischaemia reduction is related to coronary collateral function. DESIGN Prospective case-control study with intraindividual comparison of myocardial ischaemia during two 2-min coronary artery balloon occlusions with and without simultaneous iCSO by a balloon-tipped catheter. SETTING University Hospital. PATIENTS 35 patients with chronic stable coronary artery disease. INTERVENTION 2-min iCSO. MAIN OUTCOME MEASURES Myocardial ischaemia as assessed by intracoronary (i.c.) ECG ST shift at 2 min of coronary artery balloon occlusion. Collateral flow index (CFI) without iCSO, that is, the ratio between mean distal coronary occlusive (Poccl) and mean aortic pressure (Pao) both minus central venous pressure. RESULTS I.c. ECG ST segment shift (elevation in all) at the end of the procedure with iCSO versus without iCSO was 1.33±1.25 mV versus 1.85±1.45 mV, p<0.0001. Regression analysis showed that the degree of i.c. ECG ST shift reduction during iCSO was related to CFI, best fitting a Lorentzian function (r(2)=0.61). Ischaemia reduction with iCSO was greatest at a CFI of 0.05-0.20, whereas in the low and high CFI range the effect of iCSO was absent. CONCLUSIONS ICSO reduces myocardial ischaemia in patients with chronic coronary artery disease. Ischaemia reduction by iCSO depends on coronary collateral function. A minimal degree of collateral function is necessary to render iCSO effective. ICSO cannot manifest an effect when collateral function prevents ischaemia in the first place

    Effect of lifetime endurance training on left atrial mechanical function and on the risk of atrial fibrillation

    No full text
    Background Left atrium (LA) dilation and P-wave duration are linked to the amount of endurance training and are risk factors for atrial fibrillation (AF). The aim of this study was to evaluate the impact of LA anatomical and electrical remodeling on its conduit and pump function measured by two-dimensional speckle tracking echocardiography (STE). Method Amateur male runners > 30 years were recruited. Study participants (n = 95) were stratified in 3 groups according to lifetime training hours: low ( 4500 h, n = 30). Results No differences were found, between the groups, in terms of age, blood pressure, and diastolic function. LA maximal volume (30 ± 5, 33 ± 5 vs. 37 ± 6 ml/m2, p < 0.001), and conduit volume index (9 ± 3, 11 ± 3 vs. 12 ± 3 ml/m2, p < 0.001) increased significantly from the low to the high training group, unlike the STE parameters: pump strain − 15.0 ± 2.8, − 14.7 ± 2.7 vs. − 14.9 ± 2.6%, p = 0.927; conduit strain 23.3 ± 3.9, 22.1 ± 5.3 vs. 23.7 ± 5.7%, p = 0.455. Independent predictors of LA strain conduit function were age, maximal early diastolic velocity of the mitral annulus, heart rate and peak early diastolic filling velocity. The signal-averaged P-wave (135 ± 11, 139 ± 10 vs. 148 ± 14 ms, p < 0.001) increased from the low to the high training group. Four episodes of non-sustained AF were recorded in one runner of the high training group. Conclusion The LA anatomical and electrical remodeling does not have a negative impact on atrial mechanical function. Hence, a possible link between these risk factors for AF and its actual, rare occurrence in this athlete population, could not be uncovered in the present study

    The effect of heart rate reduction by ivabradine on collateral function in patients with chronic stable coronary artery disease

    No full text
    Objective To evaluate the effect of heart rate reduction by ivabradine on coronary collateral function in patients with chronic stable coronary artery disease (CAD). Methods This was a prospective randomised placebo-controlled monocentre trial in a university hospital setting. 46 patients with chronic stable CAD received placebo (n=23) or ivabradine (n=23) for the duration of 6 months. The main outcome measure was collateral flow index (CFI) as obtained during a 1 min coronary artery balloon occlusion at study inclusion (baseline) and at the 6-month follow-up examination. CFI is the ratio between simultaneously recorded mean coronary occlusive pressure divided by mean aortic pressure both subtracted by mean central venous pressure. Results During follow-up, heart rate changed by +0.2±7.8 beats/min in the placebo group, and by –8.1±11.6 beats/min in the ivabradine group (p=0.0089). In the placebo group, CFI decreased from 0.140±0.097 at baseline to 0.109±0.067 at follow-up (p=0.12); it increased from 0.107±0.077 at baseline to 0.152±0.090 at follow-up in the ivabradine group (p=0.0461). The difference in CFI between the 6-month follow-up and baseline examination amounted to −0.031±0.090 in the placebo group and to +0.040±0.094 in the ivabradine group (p=0.0113). Conclusions Heart rate reduction by ivabradine appears to have a positive effect on coronary collateral function in patients with chronic stable CAD

    Comparison of three-dimensional proximal isovelocity surface area to cardiac magnetic resonance imaging for quantifying mitral regurgitation.

    No full text
    The aim of our study was to evaluate 3-dimensional (3D) color Doppler proximal isovelocity surface area (PISA) as a tool for quantitative assessment of mitral regurgitation (MR) against in vitro and in vivo reference methods. A customized 3D PISA software was validated in vitro against a flowmeter MR phantom. Sixty consecutive patients, with ≄mild MR of any cause, were recruited and the regurgitant volume (RVol) was measured by 2D PISA, 3D peak PISA, and 3D integrated PISA, using transthoracic (TTE) and transesophageal echocardiography (TEE). Cardiac magnetic resonance imaging (CMR) was used as reference method. Flowmeter RVol was associated with 3D integrated PISA as follows: y = 0.64x + 4.7, r(2) = 0.97, p <0.0001 for TEE and y = 0.88x + 4.07, r(2) = 0.96, p <0.0001 for TTE. The bias and limit of agreement in the Bland-Altman analysis were 6.8 ml [-3.5 to 17.1] for TEE and -0.059 ml [-6.2 to 6.1] for TTE. In vivo, TEE-derived 3D integrated PISA was the most accurate method for MR quantification compared to CMR: r(2) = 0.76, y = 0.95x - 3.95, p <0.0001; 5.1 ml (-14.7 to 26.5). It was superior to TEE 3D peak PISA (r(2) = 0.67, y = 1.00x + 6.20, p <0.0001; -6.3 ml [-33.4 to 21.0]), TEE 2D PISA (r(2) = 0.54, y = 0.76x + 0.18, p <0.0001; 8.4 ml [-20.4 to 37.2]), and TTE-derived measurements. It was also most accurate by receiver operating characteristic analysis (area under the curve 0.99) for the detection of severe MR, RVol cutoff = 48 ml, sensibility 100%, and specificity 96%. RVol and the cutoff to define severe MR were underestimated using the most accurate method. In conclusion, quantitative 3D color Doppler echocardiography of the PISA permits a more accurate MR assessment than conventional techniques and, consequently, should enable an optimized management of patients suffering from MR

    Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial

    No full text
    BACKGROUND: The efficacy of granulocyte colony-stimulating factor (G-CSF) for coronary collateral growth promotion and thus impending myocardial salvage has not been studied so far, to our best knowledge. METHODS AND RESULTS: In 52 patients with chronic stable coronary artery disease, age 62+/-11 years, the effect on a marker of myocardial infarct size (ECG ST segment elevation) and on quantitative collateral function during a 1-minute coronary balloon occlusion was tested in a randomized, placebo-controlled, double-blind fashion. The study protocol before coronary intervention consisted of occlusive surface and intracoronary lead ECG recording as well as collateral flow index (CFI, no unit) measurement in a stenotic and a > or =1 normal coronary artery before and after a 2-week period with subcutaneous G-CSF (10 microg/kg; n=26) or placebo (n=26). The CFI was determined by simultaneous measurement of mean aortic, distal coronary occlusive, and central venous pressure. The ECG ST segment elevation >0.1 mV disappeared significantly more often in response to G-CSF (11/53 vessels; 21%) than to placebo (0/55 vessels; P=0.0005), and simultaneously, CFI changed from 0.121+/-0.087 at baseline to 0.166+/-0.086 at follow-up in the G-CSF group, and from 0.152+/-0.082 to 0.131+/-0.071 in the placebo group (P<0.0001 for interaction of treatment and time). The absolute change in CFI from baseline to follow-up amounted to +0.049+/-0.062 in the G-CSF group and to -0.010+/-0.060 in the placebo group (P<0.0001). CONCLUSIONS: Subcutaneous G-CSF is efficacious during a short-term protocol in improving signs of myocardial salvage by coronary collateral growth promotion
    corecore