1,060 research outputs found

    The Use of Arrest Records In Pre-Employment Screening In Franklin County, Ohio

    Get PDF
    Researchers reviewed the legality of employers using arrest records without convictions in pre-employment screenings; conducted surveys and focus groups to learn about pre-employment screening practices in Franklin County, OH; and studied arrest record data to determine whether black males in the region were more likely than others to be arrested and not subsequently convicted

    Mott insulators and correlated superfluids in ultracold Bose-Fermi mixtures

    Full text link
    We study the effects of interaction between bosons and fermions in a Bose-Fermi mixtures loaded in an optical lattice. We concentrate on the destruction of a bosonic Mott phase driven by repulsive interaction between bosons and fermions. Once the Mott phase is destroyed, the system enters a superfluid phase where the movements of bosons and fermions are correlated. We show that this phase has simultaneously correlations reminiscent of a conventional superfluid and of a pseudo-spin density wave order

    Competition between Phase Separation and Spin Density Wave or Charge Density Wave Order: Role of Long-Range Interactions

    Full text link
    Recent studies of pairing and charge order in materials such as FeSe, SrTiO3_3, and 2H-NbSe2_2 have suggested that momentum dependence of the electron-phonon coupling plays an important role in their properties. Initial attempts to study Hamiltonians which either do not include or else truncate the range of Coulomb repulsion have noted that the resulting spatial non-locality of the electron-phonon interaction leads to a dominant tendency to phase separation. Here we present Quantum Monte Carlo results for such models in which we incorporate both on-site and intersite electron-electron interactions. We show that these can stabilize phases in which the density is homogeneous and determine the associated phase boundaries. As a consequence, the physics of momentum dependent electron-phonon coupling can be determined outside of the trivial phase separated regime.Comment: 9 pages, 7 figure

    Supersolid phases in the one dimensional extended soft core Bosonic Hubbard model

    Full text link
    We present results of Quantum Monte Carlo simulations for the soft core extended bosonic Hubbard model in one dimension exhibiting the presence of supersolid phases similar to those recently found in two dimensions. We find that in one and two dimensions, the insulator-supersolid transition has dynamic critical exponent z=2 whereas the first order insulator-superfluid transition in two dimensions is replaced by a continuous transition with z=1 in one dimension. We present evidence that this transition is in the Kosterlitz-Thouless universality class and discuss the mechanism behind this difference. The simultaneous presence of two types of quasi long range order results in two soliton-like dips in the excitation spectrum.Comment: 4 pages, 5 figure

    Interacting spin-1 bosons in a two-dimensional optical lattice

    Full text link
    We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of spin-1 bosons trapped in a square optical lattice. The phase diagram is characterized by the mobility of the particles (Mott insulating or superfluid phase) and by their magnetic properties. For ferromagnetic on-site interactions, the whole phase diagram is ferromagnetic and the Mott insulators-superfluid phase transitions are second order. For antiferromagnetic on-site interactions, spin nematic order is found in the odd Mott lobes and in the superfluid phase. Furthermore, the superfluid-insulator phase transition is first or second order depending on whether the density in the Mott is even or odd. Inside the even Mott lobes, we observe a singlet-to-nematic transition for certain values of the interactions. This transition appears to be first order

    Superconducting Transitions in Flat Band Systems

    Full text link
    The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Monte Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems

    Two-photon Rabi-Hubbard and Jaynes-Cummings-Hubbard models: photon pair superradiance, Mott insulator and normal phases

    Full text link
    We study the ground state phase diagrams of two-photon Dicke, the one-dimensional Jaynes-Cummings-Hubbard (JCH), and Rabi-Hubbard (RH) models using mean field, perturbation, quantum Monte Carlo (QMC), and density matrix renormalization group (DMRG) methods. We first compare mean field predictions for the phase diagram of the Dicke model with exact QMC results and find excellent agreement. The phase diagram of the JCH model is then shown to exhibit a single Mott insulator lobe with two excitons per site, a superfluid (SF, superradiant) phase and a large region of instability where the Hamiltonian becomes unbounded. Unlike the one-photon model, there are no higher Mott lobes. Also unlike the one-photon case, the SF phases above and below the Mott are surprisingly different: Below the Mott, the SF is that of photon {\it pairs} as opposed to above the Mott where it is SF of simple photons. The mean field phase diagram of the RH model predicts a transition from a normal to a superradiant phase but none is found with QMC.Comment: 14 pages, 14 figure

    Thermal phase diagrams of columnar liquid crystals

    Full text link
    In order to understand the possible sequence of transitions from the disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene (HHTT), we study a three-dimensional planar model with octupolar interactions inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approximation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi one-dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe

    Metallic phase in the two-dimensional ionic Hubbard model

    Full text link
    We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators, respectively. When these two energies are of the same order we find a metallic region. Charge and magnetic structure factors demonstrate the presence of antiferromagnetism only in the Mott region, although the externally imposed density modulation is present everywhere in the phase diagram. Away from half-filling, other insulating phases are found. Kinetic energy correlations do not give clear signals for the existence of a bond-ordered phase
    • …
    corecore