22 research outputs found

    Photosensitizer and light pave the way for cytosolic targeting and generation of cytosolic CD8 T cells using PLGA vaccine particles

    Full text link
    The generation of CTLs is crucial in the immunological fight against cancer and many infectious diseases. To achieve this, vaccine Ags need to be targeted to the cytosol of dendritic cells, which can activate CD8 T cells via MHC class I (MHCI). Therefore, such targeting has become one of the major objectives of vaccine research. In this study, we aimed to bypass the unwanted and default MHC class II Ag presentation and trigger MHCI presentation by using a photosensitizer that, upon light activation, would facilitate cytosolic targeting of codelivered Ag. Poly(lactide-co-glycolide) microparticles ∌1 ÎŒm size were loaded with OVA and the photosensitizer tetraphenyl chlorine disulphonate (TPCS2a) and administered intradermally in mice, which were illuminated 1 d later for activation of the photosensitizer. Immunization in the presence of TPCS2a significantly increased activation of CD8 T cells compared with immunization without TPCS2a and as measured by CD8 T cell proliferation, production of proinflammatory IFN-Îł, TNF-α, and IL-2, and prevention of tumor growth. Cytotoxicity was demonstrated by granzyme B production in vitro and by in vivo killing of CFSE-labeled targets. CD4-dependent Ab responses were abrogated in mice immunized with TPCS2a-containing particles, suggesting that photosensitization facilitated a shift from default MHC class II toward MHCI Ag presentation. Hence, vaccine particles with Ag and photosensitizers proved an effective vehicle or adjuvant for stimulation of CTLs, and they may find potential application in therapeutic cancer vaccination and in prophylactic and therapeutic vaccination against intracellular infections

    Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen

    Full text link
    The protection or treatment of several immunological disorders is dependent on the antigen-specific and cytotoxic CD8 T cells. However, vaccines aimed at stimulating CD8 T-cell responses are typically ineffective because vaccine antigens are primarily processed by the MHC class-II and not the MHC class-I pathway of antigen presentation: the latter requires cytosolic delivery of antigen. In order to facilitate targeting of antigen to cytosol, the antigen was combined with the photosensitiser TPCS2a (disulfonated tetraphenyl chlorin) and administered intradermally to mice. The photosensitiser was activated by illumination of the injection site. This photochemical internalization (PCI) strongly increased the stimulation of CD8 T-cell responses as measured by antigen-specific proliferation and secretion of pro-inflammatory cytokines. Fluorescence microscopy showed that delivery to cytosol was TPCS2a dependent and occurred by light-induced disruption of TPCS2a- and antigen-containing endosomes. PCI-based vaccination prevented growth of malignant B16 cells as compared with vaccination without PCI. In conclusion, PCI represents a potent tool for delivery of antigens to cytosol for stimulation of cytotoxic CD8 T-cell responses. This study demonstrated a first proof-of-principle for PCI-mediated immunisation with potential application in cancer immunotherapy

    Photochemical targeting of antigens to the cytosol for stimulation of MHC class-I-restricted T-cell responses

    Full text link
    Tumour chemotherapy with drugs is typically associated with severe systemic and local side effects for which reason immunotherapy represents a safer alternative. However, vaccination often fails to generate the required cytotoxic CD8 T-cell responses due to insufficient access of antigens to the cytosol and the MHC class I pathway of antigen presentation. One important issue of tumour research is therefore to develop strategies that allow cytosolic targeting or endosomal escape of tumour antigens. The objective of the current study was to test whether endocytosed antigen could be delivered to MHC class I by means of photochemical internalisation (PCI). Briefly, the antigen and the photosensitiser Amphinex were loaded in vitro onto bone-marrow-derived murine dendritic cells (DCs). After light activation, which is supposed to cause disruption of OVA- and Amphinex-containing endosomes, the DCs were cultured with OVA-specific CD8 T cells or used for immunisation of mice. PCI facilitated CD8 T-cell responses as measured by IFN-Îł secretion in vitro and CD8 T-cell proliferation in vivo. In conclusion, the current proof-of-concept study is the first to describe PCI-mediated immunisation and the results revealed the feasibility of this novel technology in autologous vaccination for stimulation of CD8 T-cell responses

    Photosensitisation facilitates cross-priming of adjuvant-free protein vaccines and stimulation of tumour-suppressing CD8 T cells

    Full text link
    Cancer vaccines aim to induce CD8 T cells infiltrating the tumour. For protein-based vaccines, the main biological barrier to overcome is the default MHC class-II-pathway, with activation of CD4 T cells rather than CD8 T cells. The latter requires antigens to access the cytosol and MHC class I antigen presentation. We applied photosensitiser and light to trigger disruption of antigen-containing endosomes and thereby MHC class I cross-presentation of a model cancer vaccine. This "photochemical internalisation" resulted in activation, proliferation, and IFN-Îł production of cytotoxic CD8 T cells, which suppressed tumour growth by infiltrating CD8 T cells and caspase-3-dependent apoptosis. The process was independent of MHC class II, MyD88, and TLR4 signalling, but dependent on trypsin- and caspase-like proteasome activity and partly also on chloroquine. This novel method of vaccination may find applications in cancer immunotherapy where the activation of CD8 T cells is important

    Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    No full text
    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here we investigated the potential of PCI as a novel, minimally invasive and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30-100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses

    Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    No full text
    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses
    corecore