16 research outputs found

    Hippocampal Homer1 Levels Influence Motivational Behavior in an Operant Conditioning Task

    Get PDF
    Loss of motivation and learning impairments are commonly accepted core symptoms of psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is dependent on the hippocampal formation but the molecular mechanisms that lead to functional incentive motivation in this brain region are still largely unknown. Recent evidence implicates neurotransmission via metabotropic glutamate receptors and Homer1, their interaction partner in the postsynaptic density, in drug addiction and motivational learning. As previous reports mainly focused on the prefrontal cortex and the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant reward learning in the present study. We therefore tested either Homer1 knockout mice or mice that overexpress Homer1 in the hippocampus in an operant conditioning paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that either displays an inability to perform the task or outstanding hyperactivity in both learning and motivational sessions. Due to the apparent bimodal distribution of this phenotype, the overall effect of Homer1 deletion in this paradigm is not significantly altered. Overexpression of hippocampal Homer1 did not lead to a significantly altered learning performance in any stage of the testing paradigm, yet may subtly contribute to emerging motivational deficits. Our results indicate an involvement of Homer1-mediated signaling in the hippocampus in motivation-based learning tasks and encourage further investigations regarding the specific molecular underpinnings of the phenotypes observed in this study. We also suggest to cautiously interpret the results of this and other studies regarding the phenotype following Homer1 manipulations in animals, since their behavioral phenotype appears to be highly diverse. Future studies would benefit from larger group sizes that would allow splitting the experimental groups in responders and non-responders

    Hepatocytic expression of human sodium-taurocholate cotransporting polypeptide enables hepatitis B virus infection of macaques

    Get PDF
    Hepatitis B virus (HBV) is a major global health concern, and the development of curative therapeutics is urgently needed. Such efforts are impeded by the lack of a physiologically relevant, pre-clinical animal model of HBV infection. Here, we report that expression of the HBV entry receptor, human sodium-taurocholate cotransporting polypeptide (hNTCP), on macaque primary hepatocytes facilitates HBV infection in vitro, where all replicative intermediates including covalently closed circular DNA (cccDNA) are present. Furthermore, viral vector-mediated expression of hNTCP on hepatocytes in vivo renders rhesus macaques permissive to HBV infection. These in vivo macaque HBV infections are characterized by longitudinal HBV DNA in serum, and detection of HBV DNA, RNA, and HBV core antigen (HBcAg) in hepatocytes. Together, these results show that expressing hNTCP on macaque hepatocytes renders them susceptible to HBV infection, thereby establishing a physiologically relevant model of HBV infection to study immune clearance and test therapeutic and curative approaches

    Immunogenicity and antiviral response of therapeutic hepatitis B vaccination in a mouse model of hbeag-negative, persistent hbv infection.

    No full text
    During the natural course of chronic hepatitis B virus (HBV) infection, the hepatitis B e antigen (HBeAg) is typically lost, while the direct transmission of HBeAg-negative HBV may result in fulminant hepatitis B. While the induction of HBV-specific immune responses by therapeutic vaccination is a promising, novel treatment option for chronic hepatitis B, it remains unclear whether a loss of HBeAg may influence its efficacy or tolerability. We therefore generated an adeno-associated virus (AAV)-vector that carries a 1.3-fold overlength HBV genome with a typical stop-codon mutation in the pre-core region and initiates the replication of HBeAg(−) HBV in mouse livers. Infection of C57BL/6 mice established persistent HBeAg(−) HBV-replication without any detectable anti-HBV immunity or liver damage. HBV-carrier mice were immunized with TherVacB, a therapeutic hepatitis B vaccine that uses a particulate HBV S and a core protein for prime vaccination, and a modified vaccinia Ankara (MVA) for boost vaccination. The TherVacB immunization of HBeAg(+) and HBeAg(−) HBV carrier mice resulted in the effective induction of HBV-specific antibodies and the loss of HBsAg but only mild liver damage. Intrahepatic, HBV-specific CD8 T cells induced in HBeAg(−) mice expressed more IFNγ but showed similar cytolytic activity. This indicates that the loss of HBeAg improves the performance of therapeutic vaccination by enhancing non-cytolytic effector functions

    Mediobasal hypothalamic FKBP51 acts as a molecular switch linking autophagy to whole-body metabolism.

    No full text
    The mediobasal hypothalamus (MBH) is the central region in the physiological response to metabolic stress. The FK506-binding protein 51 (FKBP51) is a major modulator of the stress response and has recently emerged as a scaffolder regulating metabolic and autophagy pathways. However, the detailed protein-protein interactions linking FKBP51 to autophagy upon metabolic challenges remain elusive. We performed mass spectrometry-based metabolomics of FKBP51 knockout (KO) cells revealing an increased amino acid and polyamine metabolism. We identified FKBP51 as a central nexus for the recruitment of the LKB1/AMPK complex to WIPI4 and TSC2 to WIPI3, thereby regulating the balance between autophagy and mTOR signaling in response to metabolic challenges. Furthermore, we demonstrated that MBH FKBP51 deletion strongly induces obesity, while its overexpression protects against high-fat diet (HFD)-induced obesity. Our study provides an important novel regulatory function of MBH FKBP51 within the stress-adapted autophagy response to metabolic challenges

    Pharmacological Inhibition of the Psychiatric Risk Factor FKBP51 Has Anxiolytic Properties.

    No full text
    Anxiety-related psychiatric disorders represent one of the largest health burdens worldwide. Single nucleotide polymorphisms of the FK506 binding protein 51 (FKBP51) gene have been repeatedly associated with anxiety-related disorders and stress sensitivity. Given the intimate relationship of stress and anxiety, we hypothesized that amygdala FKBP51 may mediate anxiety-related behaviors. Mimicking the stress effect by specifically overexpressing FKBP51 in the basolateral amygdala (BLA) or central amygdala resulted in increased anxiety-related behavior, respectively. In contrast, application of a highly selective FKBP51 point mutant antagonist, following FKBP51(mut) BLA-overexpression, reduced the anxiogenic phenotype. We subsequently tested a novel FKBP51 antagonist, SAFit2, in wild-type mice via BLA microinjections, which reduced anxiety-related behavior. Remarkably, the same effect was observed following peripheral administration of SAFit2. To our knowledge, this is the first in vivo study using a specific FKBP51 antagonist, thereby unraveling the role of FKBP51 and its potential as a novel drug target for the improved treatment of anxiety-related disorders

    Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

    No full text
    Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic–pituitary–adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain’s key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.87

    Neutrophils direct preexisting matrix to initiate repair in damaged tissues.

    No full text
    Internal organs heal injuries with new connective tissue, but the cellular and molecular events of this process remain obscure. By tagging extracellular matrix around the mesothelium lining in mouse peritoneum, liver and cecum, here we show that preexisting matrix was transferred across organs into wounds in various injury models. Using proteomics, genetic lineage-tracing and selective injury in juxtaposed organs, we found that the tissue of origin for the transferred matrix likely dictated the scarring or regeneration of the healing tissue. Single-cell RNA sequencing and genetic and chemical screens indicated that the preexisting matrix was transferred by neutrophils dependent on the HSF-integrin AM/B2-kindlin3 cascade. Pharmacologic inhibition of this axis prevented matrix transfer and the formation of peritoneal adhesions. Matrix transfer was thus an early event of wound repair and provides a therapeutic window to dampen scaring across a range of conditions
    corecore