13 research outputs found

    Variation of Quench Propagation Velocities in YBCO Cables

    No full text
    We show by modelling that the quench propagation velocity is not constant in HTS coils but it changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation of these velocities. According to the results in our particular simulation case, the longitudinal normal zone propagation velocity is 30 % higher far away from the quench origin compared to its immediate vicinity when Top=4.2 K and Tcs=15 K

    Modeling of Minimum Energy Required to Quench an HTS Magnet With a Strip Heater

    No full text
    Due to the wide spectrum of current sharing temperatures in an HTS magnet, estimating the energy required to quench the magnet is a complicated task. On the other hand, quenching an LTS magnet for quench characterization purposes with a heater is straight-forward due to the small temperature margin, and correspondingly low minimum quench energy (MQE). To estimate the required energy for LTS magnet, the analytic concept of MQE can be utilized. In this paper we propose that only numerical simulations can give adequate estimates to the MQE of an HTS magnet for measurement purposes. Further, due to the high enthalpy margin, the utilization of spot heaters with short energy pulses becomes questionable. We present in detail the effect of heater’s pulse length to the MQE when a strip heater is utilized for quenching. In addition, the effect of the heater area on MQE is studied. We consider the model of a REBCO coil to be constructed and tested in a European project EuCARD-2. According to the results: 1) MQE increases almost linearly for pulse lengths between 100 ms and 500 ms. 2) When the heater area is enlarged, the required energy per area saturates to a certain value related to the coil’s enthalpy margin. 3) MQE obtained with a traditional analytic approach based on a minimum propagating zone (MPZ) underestimates considerably the numerically obtained MQE

    Hot Spot Temperature in an HTS Coil: Simulations With MIITs and Finite Element Method

    No full text
    MIITs, a zero-dimensional concept to study hot spot temperature, has been previously used to estimate hot spot temperatures and quench heater delays in NbTi and Nb3_{3}Sn magnets. However, quench behavior is completely different in hightemperature superconducting (HTS) magnets due to the slow normal zone propagation velocity and the high temperature margin. Because the MIITs concept does not take into account thermal diffusion in the magnet, opposite to the finite-element method (FEM) analysis, the difference of these concepts is studied in this paper. Here, we have taken the approach to compute the hot spot temperatures for a future HTS magnet, designed to be built from REBCO Roebel cable, with MIITs and FEM simulations. The magnet protection is accomplished with a dump resistor, and the effect of quench detection threshold voltage on the hot spot temperature has been studied. Furthermore, the inductance of the magnet increases with the magnet length. Thus, there exists a maximum inductance of the magnet, which should not be exceeded to be able to protect the magnet only with a dump resistor. The hot spot temperatures with different values of inductance are also studied in this paper. Our simulations show that the hot spot temperatures computed with MIITs are from 60 to 150 K higher than those of FEM analysis. Thus, the MIITs concept seems unreliable when considering hot spot temperatures in HTS magnets protected with only dump resistors. However, the MIITs concept might be a usable tool when comparing different magnet designs. If 400 K is the upper limit for the hot spot temperature and the protection scheme includes only a dump resistor, the length of the investigated magnet can be increased to only such value that the magnet inductance is at most 50 mH

    Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    No full text
    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development
    corecore