4 research outputs found

    Registration of phase contrast images in propagation-based X-ray phase tomography

    Get PDF
    International audienceX-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method

    Artifact Analysis for Axially Elongated Lissajous Trajectories in Magnetic Particle Imaging

    No full text
    Magnetic Particle Imaging promises great potential for various imaging scenarios with medical purpose. In order to meet this potential, one of the key factors is that the size and the shape of the sampling area need to be adaptable to the aimed applications. An interesting approach to achieve this within medical and technical safety limits is by use of focus fields. However, even with current focus-field approaches, an enlargement in axial direction remains a challenging task. Recently, a use of an elongated sampling trajectory was proposed to address this challenge. Such an elongation can be achieved either by superimposing an orthogonal oriented linear focus field to a 2D trajectory or by an additional continuous movement in axial direction. The resulting elongated trajectory allows for a larger axial coverage of a scanned object. However, based on the physical properties of the signal generation, the elongation length needs to be limited to avoid signal loss or the occurrence of artifacts. In this work, a simulation based artifact analysis is carried out for Lissajous trajectories to determine an elongation limit that allows for both, the avoidance of signal loss and artifacts.

    Combination of Whole-Body Baseline CT Radiomics and Clinical Parameters to Predict Response and Survival in a Stage-IV Melanoma Cohort Undergoing Immunotherapy

    No full text
    Background: This study investigated whether a machine-learning-based combination of radiomics and clinical parameters was superior to the use of clinical parameters alone in predicting therapy response after three months, and overall survival after six and twelve months, in stage-IV malignant melanoma patients undergoing immunotherapy with PD-1 checkpoint inhibitors and CTLA-4 checkpoint inhibitors. Methods: A random forest model using clinical parameters (demographic variables and tumor markers = baseline model) was compared to a random forest model using clinical parameters and radiomics (extended model) via repeated 5-fold cross-validation. For this purpose, the baseline computed tomographies of 262 stage-IV malignant melanoma patients treated at a tertiary referral center were identified in the Central Malignant Melanoma Registry, and all visible metastases were three-dimensionally segmented (n = 6404). Results: The extended model was not significantly superior compared to the baseline model for survival prediction after six and twelve months (AUC (95% CI): 0.664 (0.598, 0.729) vs. 0.620 (0.545, 0.692) and AUC (95% CI): 0.600 (0.526, 0.667) vs. 0.588 (0.481, 0.629), respectively). The extended model was not significantly superior compared to the baseline model for response prediction after three months (AUC (95% CI): 0.641 (0.581, 0.700) vs. 0.656 (0.587, 0.719)). Conclusions: The study indicated a potential, but non-significant, added value of radiomics for six-month and twelve-month survival prediction of stage-IV melanoma patients undergoing immunotherapy
    corecore