395 research outputs found

    Dynamic Remanent Vortices in Superfluid 3He-B

    Full text link
    We investigate the decay of vortices in a rotating cylindrical sample of 3He-B, after rotation has been stopped. With decreasing temperature vortex annihilation slows down as the damping in vortex motion, the mutual friction dissipation \alpha(T), decreases almost exponentially. Remanent vortices then survive for increasingly long periods, while they move towards annihilation in zero applied flow. After a waiting period \Delta t at zero flow, rotation is reapplied and the remnants evolve to rectilinear vortices. By counting these lines, we measure at temperatures above the transition to turbulence ~0.6T_c the number of remnants as a function of \alpha(T) and \Delta t. At temperatures below the transition to turbulence T \lesssim 0.55 T_c, remnants expanding in applied flow become unstable and generate in a turbulent burst the equilibrium number of vortices. Here we measure the onset temperature T_on of turbulence as a function of \Delta t, applied flow velocity, and length of sample L.Comment: Submitted to the proceedings of the Quantum Fluids and Solids Conference 2006 (to be published in Journal of Low Temperature Physics 2007) New data are adde

    Patient-related reasons for late surgery cancellations in a plastic and reconstructive surgery department

    Get PDF
    Late cancellations of scheduled operations cause direct and indirect costs for a hospital and economic and emotional stress for the patient. Previously, late cancellation rates for scheduled operations in plastic surgery have been shown to be attributable to patient-related causes in the majority of cases. In this retrospective study, we sought to examine specifically the patient-related reasons for the late cancellations in a plastic surgery operating theatre at Helsinki University Hospital in Finland from 2013 to 2014. We calculated latency between the date of decision for surgery and the scheduled operation day. In cases where the surgery was rescheduled and performed before 31 December 2015, the rescheduled waiting time latency was calculated. We aimed to improve our knowledge of the causes of late cancellations to further optimise the operating theatre efficiency and propose a strategic algorithm to avoid late cancellations During the study period, 327 (5.5%) of all the scheduled operations were recorded as late cancellations. Of these, 45.3% were because of patient-related issues. Acute infection, change in medical condition not noticed before and operation no longer necessary were by far the most common causes of cancellation, comprising 63.5%. Sixty-six per cent of patient-related cancelled operations were performed later, especially when the specific reason was patient's acute illness. Root-cause analysis shows that most of the underlying reasons for the cancellations can be attributed to a failure in communication. The majority of these cancellations were considered to be preventable, thus emphasising the importance of communication and skilful multi-professional planning of the operating theatre list. © 2018 The Author(s)Peer reviewe

    Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence

    Full text link
    The dynamics of quantized vortices in rotating 3^3He-B is investigated in the low density (single-vortex) regime as a function of temperature. An abrupt transition is observed at 0.5Tc0.5 T_{\rm c}. Above this temperature the number of vortex lines remains constant, as they evolve to their equilibrium positions. Below this temperature the number of vortices increases linearly in time until the vortex density has grown sufficiently for turbulence to switch on. On the basis of numerical calculations we suggest a mechanism responsible for vortex formation at low temperatures and identify the mutual friction parameter which governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let

    Turbulent Vortex Flow Responses at the AB Interface in Rotating Superfluid 3He-B

    Full text link
    In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A-phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B-phase vortex ends at the AB interface.Comment: 6 pages, 6 figure

    Model of Inhomogeneous Impurity Distribution in Fermi Superfluids

    Full text link
    The standard treatment of impurities in metals assumes a homogeneous distribution of impurities. In this paper we study distributions that are inhomogeneous. We discuss in detail the "isotropic inhomogeneous scattering model" which takes into account the spatially varying scattering on the scale of the superfluid coherence length. On a large scale the model reduces to a homogeneous medium with renormalized parameter values. We apply the model to superfluid 3He, where porous aerogel acts as the impurity. We calculate the transition temperature Tc, the order parameter, and the superfluid density. Both A- and B-like phases are considered. Two different types of behavior are identified for the temperature dependence of the order parameter. We compare the calculations with experiments on 3He in aerogel. We find that most of the differences between experiments and the homogeneous theory can be explained by the inhomogeneous model. All our calculations are based on the quasiclassical theory of Fermi liquids. The parameters of this theory for superfluid 3He in aerogel are discussed.Comment: 14 pages, 9 figures, minor change

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Spin susceptibility of the superfluid 3^{3}He-B in aerogel

    Full text link
    The temperature dependence of paramagnetic susceptibility of the superfluid ^{3}He-B in aerogel is found. Calculations have been performed for an arbitrary phase shift of s-wave scattering in the framework of BCS weak coupling theory and the simplest model of aerogel as an aggregate of homogeneously distributed ordinary impurities. Both limiting cases of the Born and unitary scattering can be easily obtained from the general result. The existence of gapless superfluidity starting at the critical impurity concentration depending on the value of the scattering phase has been demonstrated. While larger than in the bulk liquid the calculated susceptibility of the B-phase in aerogel proves to be conspicuously smaller than that determined experimentally in the high pressure region.Comment: 10 pages, 4 figures, REVTe

    Superfluid vortex front at T -> 0: Decoupling from the reference frame

    Full text link
    Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure

    Asymptotic motion of a single vortex in a rotating cylinder

    Full text link
    We study numerically the behavior of a single quantized vortex in a rotating cylinder. We study in particular the spiraling motion of a vortex in a cylinder that is parallel to the rotation axis. We determine the asymptotic form of the vortex and its axial and azimuthal propagation velocities under a wide range of parameters. We also study the stability of the vortex line and the effect of tilting the cylinder from the rotation axis.Comment: 9 pages, 10 figures. Considerable changes, now close to the published versio

    Experiments on the twisted vortex state in superfluid 3He-B

    Full text link
    We have performed measurements and numerical simulations on a bundle of vortex lines which is expanding along a rotating column of initially vortex-free 3He-B. Expanding vortices form a propagating front: Within the front the superfluid is involved in rotation and behind the front the twisted vortex state forms, which eventually relaxes to the equilibrium vortex state. We have measured the magnitude of the twist and its relaxation rate as function of temperature above 0.3Tc. We also demonstrate that the integrity of the propagating vortex front results from axial superfluid flow, induced by the twist.Comment: prepared for proceedings of the QFS2007 symposium in Kaza
    • …
    corecore