845 research outputs found
What do phase space methods tell us about disordered quantum systems?
Introduction
Phase space methods in quantum mechanics
- The Wigner function
- The Husimi function
- Inverse participation ratio
Anderson model in phase space
- Husimi functions
- Inverse participation ratiosComment: 14 pages, 4 figures. To be published in "The Anderson Transition and
its Ramifications - Localisation, Quantum Interference, and Interactions",
ed. by T. Brandes and S. Kettemann, Lecture Notes in Physics
(http://link.springer.de/series/lnpp/) (Springer Verlag,
Berlin-Heidelberg-New York
Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation
The Langevin equation (LE) for the one-dimensional relativistic Brownian
motion is derived from a microscopic collision model. The model assumes that a
heavy point-like Brownian particle interacts with the lighter heat bath
particles via elastic hard-core collisions. First, the commonly known,
non-relativistic LE is deduced from this model, by taking into account the
non-relativistic conservation laws for momentum and kinetic energy.
Subsequently, this procedure is generalized to the relativistic case. There, it
is found that the relativistic stochastic force is still \gd-correlated
(white noise) but does \emph{no} longer correspond to a Gaussian white noise
process. Explicit results for the friction and momentum-space diffusion
coefficients are presented and discussed.Comment: v2: Eqs. (17c) and (28) corrected; v3: discussion extended, Eqs. (33)
added, thereby connection to earlier work clarified; v4: final version,
accepted for publication in Phys. Rev.
Fluctuation theorems for continuously monitored quantum fluxes
It is shown that quantum fluctuation theorems remain unaffected if
measurements of any kind and number of observables are performed during the
action of a force protocol. That is, although the backward and forward
probabilities entering the fluctuation theorems are both altered by these
measurements, their ratio remains unchanged. This observation allows to
describe the measurement of fluxes through interfaces and, in this way, to
bridge the gap between the current theory, based on only two measurements
performed at the beginning and end of the protocol, and experiments that are
based on continuous monitoring.Comment: 4 pages, 1 figure. Accepted in Physical Review Letter
Transient currents in a molecular photo-diode
Light-induced charge transmission through a molecular junction (molecular
diode) is studied in the framework of a HOMO-LUMO model and in using a kinetic
description. Expressions are presented for the sequential (hopping) and direct
(tunneling) transient current components together with kinetic equations
governing the time-dependent populations of the neutral and charged molecular
states which participate in the current formation. Resonant and off-resonant
charge transmission processes are analyzed in detail. It is demonstrated that
the transient currents are associated with a molecular charging process which
is initiated by photo excitation of the molecule. If the coupling of the
molecule to the electrodes is strongly asymmetric the transient currents can
significantly exceed the steady state current.Comment: 17 pages, 12 figures, accepted for publication in Chemical Physic
Thermodynamics and Fluctuation Theorems for a Strongly Coupled Open Quantum System: An Exactly Solvable Case
We illustrate recent results concerning the validity of the work fluctuation
theorem in open quantum systems [M. Campisi, P. Talkner, and P. H\"{a}nggi,
Phys. Rev. Lett. {\bf 102}, 210401 (2009)], by applying them to a solvable
model of an open quantum system. The central role played by the thermodynamic
partition function of the open quantum system, -- a two level fluctuator with a
strong quantum nondemolition coupling to a harmonic oscillator --, is
elucidated. The corresponding quantum Hamiltonian of mean force is evaluated
explicitly. We study the thermodynamic entropy and the corresponding specific
heat of this open system as a function of temperature and coupling strength and
show that both may assume negative values at nonzero low temperatures.Comment: 8 pages, 6 figure
Coherence stabilization of a two-qubit gate by AC fields
We consider a CNOT gate operation under the influence of quantum bit-flip
noise and demonstrate that ac fields can change bit-flip noise into phase noise
and thereby improve coherence up to several orders of magnitude while the gate
operation time remains unchanged. Within a high-frequency approximation, both
purity and fidelity of the gate operation are studied analytically. The
numerical treatment with a Bloch-Redfield master equation confirms the
analytical results.Comment: 4 pages, 2 figure
Entropic stochastic resonance: the constructive role of the unevenness
We demonstrate the existence of stochastic resonance (SR) in confined systems
arising from entropy variations associated to the presence of irregular
boundaries. When the motion of a Brownian particle is constrained to a region
with uneven boundaries, the presence of a periodic input may give rise to a
peak in the spectral amplification factor and therefore to the appearance of
the SR phenomenon. We have proved that the amplification factor depends on the
shape of the region through which the particle moves and that by adjusting its
characteristic geometric parameters one may optimize the response of the
system. The situation in which the appearance of such entropic stochastic
resonance (ESR) occurs is common for small-scale systems in which confinement
and noise play an prominent role. The novel mechanism found could thus
constitute an important tool for the characterization of these systems and can
put to use for controlling their basic properties.Comment: 8 pages, 8 figure
Hydrodynamically enforced entropic trapping of Brownian particles
We study the transport of Brownian particles through a corrugated channel
caused by a force field containing curl-free (scalar potential) and
divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs
approach leading to an effective one-dimensional description involving the
potential of mean force. As an application, the interplay of a pressure-driven
flow and an oppositely oriented constant bias is considered. We show that for
certain parameters, the particle diffusion is significantly suppressed via the
property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter
Giant enhancement of hydrodynamically enforced entropic trapping in thin channels
Using our generalized Fick-Jacobs approach [Martens et al., PRL 110, 010601
(2013); Martens et al., Eur. Phys. J. Spec. Topics 222, 2453-2463 (2013)] and
extensive Brownian dynamics simulations, we study particle transport through
three-dimensional periodic channels of different height. Directed motion is
caused by the interplay of constant bias acting along the channel axis and a
pressure-driven flow. The tremendous change of the flow profile shape in
channel direction with the channel height is reflected in a crucial dependence
of the mean particle velocity and the effective diffusion coefficient on the
channel height. In particular, we observe a giant suppression of the effective
diffusivity in thin channels; four orders of magnitude compared to the bulk
value.Comment: 16 pages, 8 figure
Current behavior of a quantum Hamiltonian ratchet in resonance
We investigate the ratchet current that appears in a kicked Hamiltonian
system when the period of the kicks corresponds to the regime of quantum
resonance. In the classical analogue, a spatial-temporal symmetry should be
broken to obtain a net directed current. It was recently discovered that in
quantum resonance the temporal symmetry can be kept, and we prove that breaking
the spatial symmetry is a necessary condition to find this effect.
Moreover, we show numerically and analytically how the direction of the
motion is dramatically influenced by the strength of the kicking potential and
the value of the period. By increasing the strength of the interaction this
direction changes periodically, providing us with a non-expected source of
current reversals in this quantum model. These reversals depend on the kicking
period also, though this behavior is theoretically more difficult to analyze.
Finally, we generalize the discussion to the case of a non-uniform initial
condition.Comment: 6 pages, 4 figure
- …