27 research outputs found
Multimode vibrational effects in single molecule conductance: A nonequilibrium Green's function approach
The role of multimode vibrational dynamics in electron transport through
single molecule junctions is investigated. The study is based on a generic
model, which describes charge transport through a single molecule that is
attached to metal leads. To address vibrationally-coupled electron transport,
we employ a nonequilibrium Green's function approach that extends a method
recently proposed by Galperin et al. [Phys. Rev. B 73, 045314 (2006)] to
multiple vibrational modes. The methodology is applied to two systems: a
generic model with two vibrational degrees of freedom and
benzenedibutanethiolate covalently bound to gold electrodes. The results show
that the coupling to multiple vibrational modes can have a significant effect
on the conductance of a molecular junction. In particular, we demonstrate the
effect of electronically induced coupling between different vibrational modes
and study nonequilibrium vibrational effects by calculating the current-induced
excitation of vibrational modes.Comment: 31 pages, 10 figure
First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes
We overview nonequilibrium Green function combined with density functional
theory (NEGF-DFT) modeling of independent electron and phonon transport in
nanojunctions with applications focused on a new class of thermoelectric
devices where a single molecule is attached to two metallic zigzag graphene
nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make
possible injection of evanescent wavefunctions from ZGNRs, so that their
overlap within the molecular region generates a peak in the electronic
transmission. Additionally, the spatial symmetry properties of the transverse
propagating states in the ZGNR electrodes suppress hole-like contributions to
the thermopower. Thus optimized thermopower, together with diminished phonon
conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the
thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below
liquid nitrogen temperature. The reliance on evanescent mode transport and
symmetry of propagating states in the electrodes makes the
electronic-transport-determined power factor in this class of devices largely
insensitive to the type of sufficiently short conjugated organic molecule,
which we demonstrate by showing that both 18-annulene and C10 molecule
sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can
search for molecules that will further reduce the phonon thermal conductance
(in the denominator of ZT) while keeping the electronic power factor (in the
nominator of ZT) optimized. We also show how often employed Brenner empirical
interatomic potential for hydrocarbon systems fails to describe phonon
transport in our single-molecule nanojunctions when contrasted with
first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special
issue of the Journal of Computational Electronics on "Simulation of Thermal,
Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I.
Knezevic and Z. Aksamij
Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells
Evaluating Effects of AIV Infection Status on Ducks Using a Flow Cytometry-Based Differential Blood Count
ABSTRACT Ducks have recently received a lot of attention from the research community due to their importance as natural reservoirs of avian influenza virus (AIV). Still, there is a lack of tools to efficiently determine the immune status of ducks. The purpose of this work was to develop an automated differential blood count for the mallard duck (Anas platyrhynchos), to assess reference values of white blood cell (WBC) counts in this species, and to apply the protocol in an AIV field study. We established a flow cytometry-based duck WBC differential based on a no-lyse no-wash single-step one-tube technique, applying a combination of newly generated monoclonal antibodies with available duck-specific as well as cross-reacting chicken markers. The blood cell count enables quantification of mallard thrombocytes, granulocytes, monocytes, B cells, CD4+ T cells (T helper) and CD8+ cytotoxic T cells. The technique is reproducible, accurate, and much faster than traditional evaluations of blood smears. Stabilization of blood samples enables analysis up to 1 week after sampling, thus allowing for evaluation of blood samples collected in the field. We used the new technique to investigate a possible influence of sex, age, and AIV infection status on WBC counts in wild mallards. We show that age has an effect on the WBC counts in mallards, as does sex in juvenile mallards. Interestingly, males naturally infected with low pathogenic AIV showed a reduction of lymphocytes (lymphocytopenia) and thrombocytes (thrombocytopenia), which are both common in influenza A infection in humans. IMPORTANCE Outbreaks of avian influenza in poultry and humans are a global public health concern. Aquatic birds are the primary natural reservoir of avian influenza viruses (AIVs), and strikingly, AIVs mainly cause asymptomatic or mild infection in these species. Hence, immunological studies in aquatic birds are important for investigating variation in disease outcome of different hosts to AIV and may aid in early recognition and a better understanding of zoonotic events. Unfortunately, immunological studies in these species were so far hampered by the lack of diagnostic tools. Here, we present a technique that enables high-throughput white blood cell (WBC) analysis in the mallard and report changes in WBC counts in wild mallards naturally infected with AIV. Our protocol permits large-scale immune status monitoring in a widespread wild and domesticated duck species and provides a tool to further investigate the immune response in an important reservoir host of zoonotic viruses