7 research outputs found

    Micropatterned cell sheets as structural building blocks for biomimetic vascular patch application

    Full text link
    To successfully develop a functional tissue-engineered vascular patch, recapitulating the hierarchical structure of vessel is critical to mimic mechanical properties. Here, we use a cell sheet engineering strategy with micropatterning technique to control structural organization of bovine aortic vascular smooth muscle cell (VSMC) sheets. Actin filament staining and image analysis showed clear cellular alignment of VSMC sheets cultured on patterned substrates. Viability of harvested VSMC sheets was confirmed by Live/DeadĀ® cell viability assay after 24 and 48 hours of transfer. VSMC sheets stacked to generate bilayer VSMC patches exhibited strong inter-layer bonding as shown by lap shear test. Uniaxial tensile testing of monolayer VSMC sheets and bilayer VSMC patches displayed nonlinear, anisotropic stress-stretch response similar to the biomechanical characteristic of a native arterial wall. Collagen content and structure were characterized to determine the effects of patterning and stacking on extracellular matrix of VSMC sheets. Using finite-element modeling to simulate uniaxial tensile testing of bilayer VSMC patches, we found the stress-stretch response of bilayer patterned VSMC patches under uniaxial tension to be predicted using an anisotropic hyperelastic constitutive model. Thus, our cell sheet harvesting system combined with biomechanical modeling is a promising approach to generate building blocks for tissue-engineered vascular patches with structure and mechanical behavior mimicking native tissue

    Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue

    Get PDF
    Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres' mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.T32 EB006359 - NIBIB NIH HH

    Silk - Its Mysteries, How It Is Made, and How It Is Used

    Get PDF
    This article reviews fundamental and applied aspects of silkā€“one of Natureā€™s most intriguing materials in terms of its strength, toughness, and biological roleā€“in its various forms, from protein molecules to webs and cocoons, in the context of mechanical and biological properties. A central question that will be explored is how the bridging of scales and the emergence of hierarchical structures are critical elements in achieving novel material properties, and how this knowledge can be explored in the design of synthetic materials. We review how the function of a material system at the macroscale can be derived from the interplay of fundamental molecular building blocks. Moreover, guidelines and approaches to current experimental and computational designs in the field of synthetic silklike materials are provided to assist the materials science community in engineering customized fine-tuned biomaterials for biomedical applications.National Science Foundation (U.S.) (U01 EB014976)United States. Air Force. Office of Scientific ResearchUnited States. Army Research Office. Multidisciplinary University Research InitiativeUnited States. Office of Naval Research. Presidential Early Career Award for Scientists and Engineer

    Fabrication and Characterization of Recombinant Silkā€Elastinā€Likeā€Protein (SELP) Fiber

    No full text
    Silk-elastin-like-protein polymers (SELPs) are genetically engineered recombinant protein sequences consisting of repeating units of silk-like and elastin-like blocks. By combining these entities, it is shown that both the characteristic strength of silk and the temperature-dependent responsiveness of elastin can be leveraged to create an enhanced stimuli-responsive material. It is hypothesized that SELP behavior can be influenced by varying the silk-to-elastin ratio. If the responsiveness of the material at different ratios is significantly different, this would allow for the design of materials with specific temperature-based swelling and mechanical properties. This study demonstrates that SELP fiber properties can be controlled via a temperature transition dependent on the ratio of silk-to-elastin in the material. SELP fibers are experimentally wet spun from polymers with different ratios of silk-to-elastin and conditioned in either a below or above transition temperature (T t) water bath prior to characterization. The fibers with higher elastin content showed more stimuli-responsive behavior compared to the fibers with lower elastin content in the hot (57ā€“60Ā Ā°C) versus cold (4ā€“7Ā Ā°C) environment, both computationally and experimentally. This work builds a foundation for developing SELP materials with well-characterized mechanical properties and responsive features

    Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design

    No full text
    Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material

    Coordinated regulation of acid resistance in Escherichia coli

    No full text
    corecore