33 research outputs found

    Quenching of light hadrons at RHIC in a collisional energy loss scenario

    Full text link
    We evaluate the nuclear suppression factor, RAA(pT)R_{AA}(p_T) for light hadrons by taking into account the collisional energy loss. We show that in the measured pTp_T domain of RHIC the elastic process is the dominant mechanism for the partonic energy loss.Comment: 4 pages with 3 figures, Quark Matter 2008 Proceeding

    Reaction Operator Approach to Multiple Elastic Scatterings

    Get PDF
    We apply the GLV Reaction Operator formalism to compute the effects of multiple elastic scatterings of jets propagating through dense matter. We derive the elastic Reaction Operator and demonstrate that the recursion relations have a closed form solution that reduces to the familiar Glauber form. We also investigate the accuracy of the Gaussian dipole approximation for jet transverse momentum broadening.Comment: 9 pages, 4 .ps figures. Uses REVTeX and bbox.st

    Jet tomography

    Full text link
    I summarize the recent advances in jet tomographic studies of cold and hot nuclear matter based on perturbative QCD calculations of medium-induced gluon bremsstrahlung. Quantitative applications to ultrarelativistic heavy ion reactions at RHIC indicate the creation of a deconfined state of QCD with initial energy density on the order of 100 times cold nuclear matter density.Comment: Plenary talk given at the seventeenth international conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004). 8 pages, 12 figures. Updated references, updated Table

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    Multi-strange baryon production in Au+Au collisions at top RHIC energy as a probe of bulk properties

    Full text link
    We report STAR preliminary results on multi-strange baryon production in Au+Au collisions at sqrt(s_NN)=200 GeV at RHIC. Its implication for the formation of a new state of matter is discussed. The system size dependence on the production of strange baryons is investigated to study the onset of strange quark equilibration in the medium. The nuclear modification factor of Lambda, Xi and Omega is also presented. Its suppression at p_T>3 GeV/c supports the formation of a dense interacting medium at RHIC. The spectra of multi-strange baryons reveal that within a hydro-inspired model, they may decouple prior than lighter particles and that their flow may be mostly developed at a partonic level. This idea is emphasized by the measurement of the v_2 of Xi+AntiXi and Omega+AntiOmega whose behaviour is close to the Lambda+AntiLambda baryon elliptic flow in the intermediate p_T region where a constituent quark scaling of v_2 is observed.Comment: 8 pages, 8 figures, Strange Quark Matter 2004 conference proceeding

    Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at \srt = 62.4 GeV

    Full text link
    We report on preliminary results of pion, kaon, and (anti-) proton transverse momentum spectra (-0.5 < y < 0) in Au+Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV using the STAR detector at RHIC. The particle identification (PID) is achieved by a combination of the STAR TPC and the new TOF detectors, which allow a PID coverage in transverse momentum (pTp_T) up to 7 GeV/c for pions, 3 GeV/c for kaons, and 5 GeV/c for (anti-) protons.Comment: 8 pages, 11 figures, Hot Quarks 2004, July 18-24, 2004, Taos Valley, New Mexico, US

    Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC

    Full text link
    We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.Comment: 10 pages, 11 figure

    An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    Full text link
    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCETG_{\rm G} recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCETG_{\rm G} we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the soft-gluon approximation. Gauge invariance of the physics results is demonstrated explicitly by performing the calculations in both the light-cone and covariant RÎľR_{\xi} gauges. We also show how the process-dependent medium-induced radiative corrections factorize from the jet production cross section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE

    Observation of modified hadronization in relativistic Au+Au collisions: a promising signature for deconfined quark-gluon matter

    Full text link
    Measurements of identified particles from Au+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV are reviewed. Emphasis is placed on nuclear modification, baryon-to-meson ratios, and elliptic flow at intermediate transverse momentum (1.5<pT<51.5 < p_T < 5 GeV/c). Possible connections between (1) these measurements, (2) the running coupling for static quark anti-quark pairs at finite temperature, and (3) the creation of a deconfined quark-gluon phase are presented. Modifications to hadronization in Au+Au collisions are proposed as a likely signature for the creation of deconfined colored matter.Comment: 8 pages, 5 figures, invited talk at the Strange Quark Matter 2004 conference, Cape Town, South Afric

    A Comment on Conical Flow Induced by Heavy-Quark Jets

    Full text link
    The suppression of high transverse momentum particles, recently discovered at RHIC, is commonly interpreted as due to parton energy loss. In high energy nuclear collisions, QCD jets would deposit a large fraction of their energy and into the produced matter. The question of how this energy is degraded and whether we can use this phenomenon to probe the properties of the produced matter is now under active discussion. It has been proposed that if this matter, which is now being referred to as a {\em strongly coupled Quark-Gluon Plasma} (sQGP), may behave as a liquid with a very small viscosity. In this case, a very specific collective excitation should be produced, called the ``conical flow'', similar e.g. to the sonic booms generated by the shock waves produced by supersonic planes. The RHIC experiments seem indeed to be obtaining some indication that the production of particles emitted opposite to a high-ptp_t jet may actually be peaked away from the quenched jet direction, at an angle roughly consistent with the direction expected in case a shock wave is produced (i.e. orthogonal to the Mach cone). In this note we speculate that for tagged heavy-quark jets one may observe a shrinkage of the Mach cone at moderate ptp_t. The experimental observation of such an effect would be a very good test for the validity of the whole picture currently emerging from the study of partonic matter in nuclear collisions
    corecore