1,206 research outputs found

    A Fractal Approach to Model Soil Structure and to Calculate Thermal Conductivity of Soils

    Get PDF
    Heat transport in soils depends on the spatial arrangement of solids, ice, air and water. In this study, we present a modified fractal approach to model the pore structure of soils and to describe its influence on the thermal conductivity. Three different fractal generators were sequentially applied to characterize a wide range of particle- and pore-size distributions. The given porosity and particle-size distribution of a clay, clay loam, silt loam and loamy sand were successfully modeled. The thermal conductivity of the fractal soil model was calculated using a network of resistors. We applied a renormalization approach to include the effects of smaller scale structures. The predictions were compared with the empirical Johansen' model (Johansen, 1975), that postulates a simple linear relationship between ice content and thermal conductivity. For high ice-saturated conditions, the calculated thermal conductivity agrees well with the empirical model. To describe partial ice saturation, we assumed that some pores were coated by ice films enclosing the air-filled center. In addition, we introduced a reduced heat exchange coefficient of the particles for unsaturated conditions. The ice-saturated and -unsaturated thermal conductivity calculated with this approach was very similar to that estimated by the empirical model. The variation of the thermal conductivities for different spatial arrangements of pores and particles in the prefractals were determined. Extreme values deviate more than 50% from the mean value

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    A Self-Consistent Microscopic Theory of Surface Superconductivity

    Full text link
    The electronic structure of the superconducting surface sheath in a type-II superconductor in magnetic fields Hc2<H<Hc3H_{c2}<H<H_{c3} is calculated self-consistently using the Bogoliubov-de Gennes equations. We find that the pair potential Δ(x)\Delta(x) exhibits pronounced Friedel oscillations near the surface, in marked contrast with the results of Ginzburg-Landau theory. The role of magnetic edge states is emphasized. The local density of states near the surface shows a significant depletion near the Fermi energy due to the development of local superconducting order. We suggest that this structure could be unveiled by scanning-tunneling microscopy studies performed near the edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende

    The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway

    Get PDF
    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ∼30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway.United States. National Institutes of Health (R01CA103866)United States. National Institutes of Health (AI47389)United States. Department of Energy (W81XWH-07-0448)United States. National Institutes of Health (F31 CA180271)United States. National Institutes of Health (F31 CA189437

    Quasiparticle States at a d-Wave Vortex Core in High-Tc Superconductors: Induction of Local Spin Density Wave Order

    Full text link
    The local density of states (LDOS) at one of the vortex lattice cores in a high Tc superconductor is studied by using a self-consistent mean field theory including interactions for both antiferromagnetism (AF) and d-wave superconductivity (DSC). The parameters are chosen in such a way that in an optimally doped sample the AF order is completely suppressed while DSC prevails. In the mixed state, we show that the local AF-like SDW order appears near the vortex core and acts as an effective local magnetic field on the quasiparticles. As a result, the LDOS at the core exhibits a double-peak structure near the Fermi level that is in good agreement with the STM observations on YBCO and BSCCO. The presence of local AF order near the votex core is also consistent with the recent neutron scattering experiment on LSCO.Comment: 4 pages, 2 ps figure

    Arg/N-degron pathway targets transcription factors and regulates specific genes

    Get PDF
    The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal or internal degrons. Our previous work produced double-knockout (2-KO) HEK293T human cell lines that lacked the functionally overlapping UBR1 and UBR2 E3 ubiquitin ligases of the Arg/N-degron pathway. Here, we studied these cells in conjunction with RNA-sequencing, mass spectrometry (MS), and split-ubiquitin binding assays. 1) Some mRNAs, such as those encoding lactate transporter MCT2 and β-adrenergic receptor ADRB2, are strongly (∼20-fold) up-regulated in 2-KO cells, whereas other mRNAs, including those encoding MAGEA6 (a regulator of ubiquitin ligases) and LCP1 (an actin-binding protein), are completely repressed in 2-KO cells, in contrast to wild-type cells. 2) Glucocorticoid receptor (GR), an immunity-modulating transcription factor (TF), is up-regulated in 2-KO cells and also physically binds to UBR1, strongly suggesting that GR is a physiological substrate of the Arg/N-degron pathway. 3) PREP1, another TF, was also found to bind to UBR1. 4) MS-based analyses identified ∼160 proteins whose levels were increased or decreased by more than 2-fold in 2-KO cells. For example, the homeodomain TF DACH1 and the neurofilament subunits NF-L (NFEL) and NF-M (NFEM) were expressed in wild-type cells but were virtually absent in 2-KO cells. 5) The disappearance of some proteins in 2-KO cells took place despite up-regulation of their mRNAs, strongly suggesting that the Arg/N-degron pathway can also modulate translation of specific mRNAs. In sum, this multifunctional proteolytic system has emerged as a regulator of mammalian gene expression, in part through conditional targeting of TFs that include ATF3, GR, and PREP1

    Basis Functions for Linear-Scaling First-Principles Calculations

    Full text link
    In the framework of a recently reported linear-scaling method for density-functional-pseudopotential calculations, we investigate the use of localized basis functions for such work. We propose a basis set in which each local orbital is represented in terms of an array of `blip functions'' on the points of a grid. We analyze the relation between blip-function basis sets and the plane-wave basis used in standard pseudopotential methods, derive criteria for the approximate equivalence of the two, and describe practical tests of these criteria. Techniques are presented for using blip-function basis sets in linear-scaling calculations, and numerical tests of these techniques are reported for Si crystal using both local and non-local pseudopotentials. We find rapid convergence of the total energy to the values given by standard plane-wave calculations as the radius of the linear-scaling localized orbitals is increased.Comment: revtex file, with two encapsulated postscript figures, uses epsf.sty, submitted to Phys. Rev.

    Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation

    Get PDF
    Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis

    Microscopic structure of a vortex line in superfluid neutron star matter

    Get PDF
    The microscopic structure of an isolated vortex line in superfluid neutron star matter is studied by solving the Bogoliubov-de Gennes equations. Our calculation, which is the starting point for a microscopic calculation of pinning forces in neutron stars, shows that the size of the vortex core varies differently with density, and is in general smaller than assumed in some earlier calculations of vortex pinning in neutron star crusts. The implications of this result are discussedComment: 5 pages, 2 figure
    • …
    corecore