48 research outputs found
Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD
A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants
IntroductionThe emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. MethodsUsing phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. ResultsOur comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. ConclusionThese findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants
The influence of the treatment response on the impact of resection margin status after preoperative chemoradiotherapy in locally advanced rectal cancer
This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Circumferential resection margin (CRM) and distal resection margin (DRM) have different impact on clinical outcomes after preoperative chemoradiotherapy (CRT) followed by surgery. Effect and adequate length of resection margin as well as impact of treatment response after preoperative CRT was evaluated. Methods: Total of 403 patients with rectal cancer underwent preoperative CRT followed by total mesorectal excision between January 2004 and December 2010. After applying the criterion of margin less than 0.5 cm for CRM or less than 1 cm for DRM, 151 cases with locally advanced rectal cancer were included as a study cohort. All patients underwent conventionally fractionated radiation with radiation dose over 50 Gy and concurrent chemotherapy with 5-fluorouracil or capecitabine. Postoperative chemotherapy was administered to 142 patients (94.0%). Median follow-up duration was 43.1 months. Results: The 5-year overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS) rates, and locoregional control rates (LRC) were 84.5%, 72.8%, 74.2%, and 86.3%, respectively. CRM of 1.5 mm and DRM of 7 mm were cutting points showing maximal difference in a maximally selected rank method. In univariate analysis, CRM of 1.5 mm was significantly related with worse clinical outcomes, whereas DRM of 7 mm was not. In multivariate analysis, CRM of 1.5 mm, and ypN were prognosticators for all studied endpoints. However, CRM was not a significant prognostic factor for good responders, defined as patients with near total regression or T down-staging, which was found in 16.5% and 40.5% among studied patients, respectively. In contrast, poor responders demonstrated a significant difference according to the CRM status for all studied end-points. Conclusions: Close CRM, defined as 1.5 mm, was a significant prognosticator, but the impact was only prominent for poor responders in subgroup analysis. Postoperative treatment strategy may be individualized based on this finding. However, findings from this study need to be validated with larger cohort
The influence of the treatment response on the impact of resection margin status after preoperative chemoradiotherapy in locally advanced rectal cancer
Background : Circumferential resection margin (CRM) and distal resection margin (DRM) have different impact on clinical outcomes after preoperative chemoradiotherapy (CRT) followed by surgery. Effect and adequate length of resection margin as well as impact of treatment response after preoperative CRT was evaluated.
Methods : Total of 403 patients with rectal cancer underwent preoperative CRT followed by total mesorectal excision between January 2004 and December 2010. After applying the criterion of margin less than 0.5 cm for CRM or less than 1 cm for DRM, 151 cases with locally advanced rectal cancer were included as a study cohort. All patients underwent conventionally fractionated radiation with radiation dose over 50 Gy and concurrent chemotherapy with 5-fluorouracil or capecitabine. Postoperative chemotherapy was administered to 142 patients (94.0%). Median follow-up duration was 43.1 months.
Results : The 5-year overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS) rates, and locoregional control rates (LRC) were 84.5%, 72.8%, 74.2%, and 86.3%, respectively. CRM of 1.5 mm and DRM of 7 mm were cutting points showing maximal difference in a maximally selected rank method. In univariate analysis, CRM of 1.5 mm was significantly related with worse clinical outcomes, whereas DRM of 7 mm was not. In multivariate analysis, CRM of 1.5 mm, and ypN were prognosticators for all studied endpoints. However, CRM was not a significant prognostic factor for good responders, defined as patients with near total regression or T down-staging, which was found in 16.5% and 40.5% among studied patients, respectively. In contrast, poor responders demonstrated a significant difference according to the CRM status for all studied end-points.
Conclusions : Close CRM, defined as 1.5 mm, was a significant prognosticator, but the impact was only prominent for poor responders in subgroup analysis. Postoperative treatment strategy may be individualized based on this finding. However, findings from this study need to be validated with larger cohort.Peer Reviewe
Protection of nigral dopaminergic neurons by AAV1 transduction with Rheb(S16H) against neurotoxic inflammation in vivo
We recently reported that adeno-associated virus serotype 1 (AAV1) transduction of murine nigral dopaminergic (DA) neurons with constitutively active ras homolog enriched in brain with a mutation of serine to histidine at position 16 [Rheb(S16H)] induced the production of neurotrophic factors, resulting in neuroprotective effects on the nigrostriatal DA system in animal models of Parkinson's disease (PD). To further investigate whether AAV1-Rheb(S16H) transduction has neuroprotective potential against neurotoxic inflammation, which is known to be a potential event related to PD pathogenesis, we examined the effects of Rheb(S16H) expression in nigral DA neurons under a neurotoxic inflammatory environment induced by the endogenous microglial activator prothrombin kringle-2 (pKr-2). Our observations showed that Rheb(S16H) transduction played a role in the neuroprotection of the nigrostriatal DA system against pKr-2-induced neurotoxic inflammation, even though there were similar levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1-beta (IL-1 beta), in the AAV1-Rheb(S16H)-treated substantia nigra (SN) compared to the SN treated with pKr-2 alone; the neuroprotective effects may be mediated by the activation of neurotrophic signaling pathways following Rheb(S16H) transduction of nigral DA neurons. We conclude that AAV1-Rheb(S16H) transduction of neuronal populations to activate the production of neurotrophic factors and intracellular neurotrophic signaling pathways may offer promise for protecting adult neurons from extracellular neurotoxic inflammation.1
Neurotrophic interactions between neurons and astrocytes following AAV1-Rheb(S16H) transduction in the hippocampus in vivo
Background and Purpose: We recently reported that AAV1-Rheb(S16H) transduction could protect hippocampal neurons through the induction of brain-derived neurotrophic factor (BDNF) in the rat hippocampus in vivo. It is still unclear how neuronal BDNF produced by AAV1-Rheb(S16H) transduction induces neuroprotective effects in the hippocampus and whether its up-regulation contributes to the enhance of a neuroprotective system in the adult brain. Experimental Approach: To determine the presence of a neuroprotective system in the hippocampus of patients with Alzheimer's disease (AD), we examined the levels of glial fibrillary acidic protein, BDNF and ciliary neurotrophic factor (CNTF) and their receptors, tropomyocin receptor kinase B (TrkB) and CNTF receptor α(CNTFRα), in the hippocampus of AD patients. We also determined whether AAV1-Rheb(S16H) transduction stimulates astroglial activation and whether reactive astrocytes contribute to neuroprotection in models of hippocampal neurotoxicity in vivo and in vitro. Key Results: AD patients may have a potential neuroprotective system, demonstrated by increased levels of full-length TrkB and CNTFRα in the hippocampus. Further AAV1-Rheb(S16H) transduction induced sustained increases in the levels of full-length TrkB and CNTFRα in reactive astrocytes and hippocampal neurons. Moreover, neuronal BDNF produced by Rheb(S16H) transduction of hippocampal neurons induced reactive astrocytes, resulting in CNTF production through the activation of astrocytic TrkB and the up-regulation of neuronal BDNF and astrocytic CNTF which had synergistic effects on the survival of hippocampal neurons in vivo. Conclusions and Implications: The results demonstrated that Rheb(S16H) transduction of hippocampal neurons could strengthen the neuroprotective system and this intensified system may have a therapeutic value against neurodegeneration in the adult brain. © 2019 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society1
Seed Dormancy Class and Ecophysiological Features of Veronicastrum sibiricum (L.) Pennell (Scrophulariaceae) Native to the Korea Peninsula
Veronicastrum sibiricum is a perennial species distributed in Korea, Japan, Manchuria, China, and Siberia. This study aimed to determine the requirements for germination and dormancy break of V. sibiricum seeds and to classify the kind of seed dormancy. Additionally, its class of dormancy was compared with other Veronicastrum and Veronica species. V. sibiricum seeds were permeable to water and had a mature embryo during seed dispersal. In field conditions, germination was prevented by physiological dormancy, which was, however, relieved by March of the next year, allowing the start of germination when suitable environmental conditions occurred. In laboratory experiments, the seeds treated with 0, 2, 4, 8, and 12 weeks of cold stratification (4 °C) germinated to 0, 79, 75, 72, and 66%, respectively. After the GA3 treatment (2.887 mM), ≥90% of the seeds germinated during the four incubation weeks at 20/10 °C. Thus, 2.887 mM GA3 and at least two weeks at 4 °C were effective in breaking physiological dormancy and initiating germination. Therefore, the V. sibiricum seeds showed non-deep physiological dormancy (PD). Previous research, which determined seed dormancy classes, revealed that Veronica taxa have PD, morphological (MD), or morphophysiological seed dormancy (MPD). The differences in the seed dormancy classes in the Veronicastrum-Veronica clade suggested that seed dormancy traits had diverged. The results provide important data for the evolutionary ecological studies of seed dormancy and seed-based mass propagation of V. sibiricum