22 research outputs found

    Engineering Dynamical Sweet Spots to Protect Qubits from 1/ff Noise

    Full text link
    Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. Based on the application of a periodic drive field, we develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise. Using the framework of Floquet theory, we prove rigorously that there are manifolds of dynamical sweet spots marked by extrema in the quasi-energy differences of the driven qubit. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single- and two-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing

    Floquet-engineered enhancement of coherence times in a driven fluxonium qubit

    Full text link
    We use the quasienergy structure that emerges when a fluxonium superconducting circuit is driven periodically to encode quantum information with dynamically induced flux-insensitive sweet spots. The framework of Floquet theory provides an intuitive description of these high-coherence working points located away from the half-flux symmetry point of the undriven qubit. This approach offers flexibility in choosing the flux bias point and the energy of the logical qubit states as shown in [\textit{Huang et al., 2020}]. We characterize the response of the system to noise in the modulation amplitude and DC flux bias, and experimentally demonstrate an optimal working point which is simultaneously insensitive against fluctuations in both. We observe a 40-fold enhancement of the qubit coherence times measured with Ramsey-type interferometry at the dynamical sweet spot compared with static operation at the same bias point.Comment: 12 pages, 7 figure

    Symplectic geometry and circuit quantization

    Full text link
    Circuit quantization is an extraordinarily successful theory that describes the behavior of quantum circuits with high precision. The most widely used approach of circuit quantization relies on introducing a classical Lagrangian whose degrees of freedom are either magnetic fluxes or electric charges in the circuit. By combining nonlinear circuit elements (such as Josephson junctions or quantum phase slips), it is possible to build circuits where a standard Lagrangian description (and thus the standard quantization method) does not exist. Inspired by the mathematics of symplectic geometry and graph theory, we address this challenge, and present a Hamiltonian formulation of non-dissipative electrodynamic circuits. The resulting procedure for circuit quantization is independent of whether circuit elements are linear or nonlinear, or if the circuit is driven by external biases. We explain how to re-derive known results from our formalism, and provide an efficient algorithm for quantizing circuits, including those that cannot be quantized using existing methods.Comment: 30 pages, 8 figure

    Moving beyond the transmon: Noise-protected superconducting quantum circuits

    Full text link
    Artificial atoms realized by superconducting circuits offer unique opportunities to store and process quantum information with high fidelity. Among them, implementations of circuits that harness intrinsic noise protection have been rapidly developed in recent years. These noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels. The main challenges in engineering such systems are simultaneously guarding against both bit- and phase-flip errors, and also ensuring high-fidelity qubit control. Although partial noise protection is possible in superconducting circuits relying on a single quantum degree of freedom, the promise of complete protection can only be fulfilled by implementing multimode or hybrid circuits. This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits

    Visualizing Heavy Fermion Confinement and Pauli-Limited Superconductivity in Layered CeCoIn5

    Full text link
    Layered material structures play a key role in enhancing electron-electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of their bulk properties. Here we use scanning tunneling microscopy and spectroscopy to directly probe in cross section the quasi-two-dimensional correlated electronic states of the heavy fermion superconductor CeCoIn5. Our measurements reveal the strong confined nature of heavy quasi-particles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase in this compound. Examining the interlayer coupled superconducting state at low temperatures, we find that the orientation of line defects relative to the d-wave order parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase

    Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth

    Full text link
    Nematic quantum fluids with wavefunctions that break the underlying crystalline symmetry can form in interacting electronic systems. We examine the quantum Hall states that arise in high magnetic fields from anisotropic hole pockets on the Bi(111) surface. Spectroscopy performed with a scanning tunneling microscope shows that a combination of local strain and many-body Coulomb interactions lift the six-fold Landau level (LL) degeneracy to form three valley-polarized quantum Hall states. We image the resulting anisotropic LL wavefunctions and show that they have a different orientation for each broken-symmetry state. The wavefunctions correspond precisely to those expected from pairs of hole valleys and provide a direct spatial signature of a nematic electronic phase

    Visualizing heavy fermions emerging in a quantum critical Kondo lattice

    Full text link
    In solids containing elements with f orbitals, the interaction between f-electron spins and those of itinerant electrons leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are fundamental to the appearance of unconventional superconductivity and non-Fermi-liquid behaviour observed in actinide- and lanthanide-based compounds. Here we use spectroscopic mapping with the scanning tunnelling microscope to detect the emergence of heavy excitations with lowering of temperature in a prototypical family of cerium-based heavy-fermion compounds. We demonstrate the sensitivity of the tunnelling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement of itinerant conduction and f electrons. Scattering and interference of the composite quasiparticles is used to resolve their energy-momentum structure and to extract their mass enhancement, which develops with decreasing temperature. The lifetime of the emergent heavy quasiparticles reveals signatures of enhanced scattering and their spectral lineshape shows evidence of energy-temperature scaling. These findings demonstrate that proximity to a quantum critical point results in critical damping of the emergent heavy excitation of our Kondo lattice system.Comment: preprint version, 26 pages, 6 figures. Supplementary: 15 pages, 14 figure
    corecore