189 research outputs found

    Ring-Type Rotary Ultrasonic Motor Using Lead-free Ceramics

    Get PDF
    Ultrasonic motors provide high torques and quick responses compared to their magnetic counterparts; therefore, they are widely used in small-scale applications such as mobile phones, microrobots, and auto-focusing modules in digital cameras. To determine the feasibility of lead-free piezoceramics for ultrasonic motor applications, we fabricated a ring-type piezoceramic with a KNN-based lead-free piezoceramic (referred to as CZ5), intended for use in an auto-focusing module of a digital camera. The vibration of the lead-free stator was observed at 45.1kHz. It is noteworthy that the fully assembled lead-free ultrasonic motor exhibited a revolution speed of 5-7 rpm, even though impedance matching with neighboring components was not considered. This result suggests that the tested KNN-based piezoceramic has great potential for use in ultrasonic motor applications, requiring minimal modifications to existing lead-based systems.ope

    Sirolimus- Versus Paclitaxel-Eluting Stents for the Treatment of Coronary Bifurcations Results From the COBIS (Coronary Bifurcation Stenting) Registry

    Get PDF
    ObjectivesWe aimed to compare the long-term clinical outcomes of patients treated with sirolimus-eluting stents (SES) or paclitaxel-eluting stents (PES) for coronary bifurcation lesions.BackgroundThere are limited data regarding comparisons of SES and PES for the treatment of bifurcation lesions.MethodsPatients who received percutaneous coronary intervention for non-left main bifurcation lesions were enrolled from 16 centers in Korea between January 2004 and June 2006. We compared major adverse cardiac events (MACE [cardiac death, myocardial infarction, or target lesion revascularization]) between the SES and PES groups in patients overall and in 407 patient pairs generated by propensity-score matching.ResultsWe evaluated 1,033 patients with bifurcation lesions treated with SES and 562 patients treated with PES. The median follow-up duration was 22 months. Treatment with SES was associated with a lower incidence of MACE (hazard ratio [HR]: 0.53, 95% confidence interval [CI]: 0.32 to 0.89, p < 0.01) and target lesion revascularization (HR: 0.55, 95% CI: 0.31 to 0.97, p = 0.02), but not of cardiac death (HR: 2.77, 95% CI: 0.40 to 18.99, p = 0.62) and cardiac death or myocardial infarction (HR: 0.97, 95% CI: 0.38 to 2.49, p = 0.94). After propensity-score matching, patients with SES still had fewer MACE and target lesion revascularization incidences than did patients with PES (HR: 0.52, 95% CI: 0.30 to 0.91, p = 0.02, and HR: 0.48, 95% CI: 0.25 to 0.91, p = 0.02, respectively). There was no significant difference in the occurrences of stent thrombosis between the groups (0.7% vs. 0.7%, p = 0.94).ConclusionsIn patients with bifurcation lesions, the use of SES resulted in better long-term outcomes than did the use of PES, primarily by decreasing the rate of repeat revascularization. (Coronary Bifurcation Stenting Registry in South Korea [COBIS]; NCT00851526

    A Case of Pulmonary Vein Tumor Presenting as a Left Atrial Mass

    Get PDF
    Primary cardiac tumors are extremely rare and can originate within the heart or be the result of tumor spread from other sites. We report a female patient with a pulmonary vein tumor extending into the left atrium that had a suspicious primary malignant origin with a sacral metastatic carcinoma. The patient was admitted complaining of pain in her buttock area as a result of a sacral tumor. It was believed that the sacral tumor was a metastasis from the imaging study and clinical manifestation. The primary malignant origin was evaluated. The chest CT showed a left atrium thrombus-like lesion without a pulmonary abnormality. After a transesophageal echocardiogram, the patient was diagnosed with a pulmonary vein tumor extending to the left atrium. The patient was given palliative radiotherapy for the sacral pain. Initially, the clinical impression was a metastatic sacral tumor with a thromboembolism of the left atrium. However, this patient was finally diagnosed with a pulmonary vein tumor with a left atrium extension by a transesophageal echocardiogram

    Randomized Trial of Stents Versus Bypass Surgery for Left Main Coronary Artery Disease 5-Year Outcomes of the PRECOMBAT Study

    Get PDF
    AbstractBackgroundIn a previous randomized trial, we found that percutaneous coronary intervention (PCI) was not inferior to coronary artery bypass grafting (CABG) for the treatment of unprotected left main coronary artery stenosis at 1 year.ObjectivesThis study sought to determine the 5-year outcomes of PCI compared with CABG for the treatment of unprotected left main coronary artery stenosis.MethodsWe randomly assigned 600 patients with unprotected left main coronary artery stenosis to undergo PCI with a sirolimus-eluting stent (n = 300) or CABG (n = 300). The primary endpoint was a major adverse cardiac or cerebrovascular event (MACCE: a composite of death from any cause, myocardial infarction, stroke, or ischemia-driven target vessel revascularization) and compared on an intention-to-treat basis.ResultsAt 5 years, MACCE occurred in 52 patients in the PCI group and 42 patients in the CABG group (cumulative event rates of 17.5% and 14.3%, respectively; hazard ratio [HR]: 1.27; 95% confidence interval [CI]: 0.84 to 1.90; p = 0.26). The 2 groups did not differ significantly in terms of death from any cause, myocardial infarction, or stroke as well as their composite (8.4% and 9.6%; HR, 0.89; 95% CI, 0.52 to 1.52; p = 0.66). Ischemia-driven target vessel revascularization occurred more frequently in the PCI group than in the CABG group (11.4% and 5.5%, respectively; HR: 2.11; 95% CI: 1.16 to 3.84; p = 0.012).ConclusionsDuring 5 years of follow-up, our study did not show significant difference regarding the rate of MACCE between patients who underwent PCI with a sirolimus-eluting stent and those who underwent CABG. However, considering the limited power of our study, our results should be interpreted with caution. (Bypass Surgery Versus Angioplasty Using Sirolimus-Eluting Stent in Patients With Left Main Coronary Artery Disease [PRECOMBAT]; NCT00422968

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202
    • 

    corecore