42 research outputs found

    Change of Potassium Current Density in Rabbit Corneal Epithelial Cells During Maturation and Cellular Senescence

    No full text
    Voltage-gated potassium (K+) channels may participate in cellular developmental regulation, including cell differentiation, proliferation and apoptosis. This study investigated the change of K+ current densities in corneal epithelial cells during maturation and cellular senescence. Methods: New Zealand white rabbits were divided into three age groups: newborn ( 10.0 pF. Using a whole-cell clamp technique, K+ current was recorded and current densities were calculated. Differences in K+ current densities among newborn, young and adult rabbits, as well as differences among small, medium and large cells, were analyzed. Results: We delineated two types of cells manifesting different amplitudes of depolarization-activated K+ outward currents. The averaged current density of type 1 response cells was significantly larger than that of type 2 cells in newborn, young, and adult groups. For newborn epithelial cells, the depolarization-gated outward K+ current density decreased from small to medium to large cells (p = 0.049, at a membrane potential of 140 mV). A similar pattern of change in current density was also delineated for these cell sizes in young and adult rabbit corneal cells (p < 0.001 for both young and adult rabbits). An increase in depolarization-gated outward K+ current density was also delineated from newborn to young to adult rabbits (p < 0.001, p < 0.001 and p < 0.006 for small, medium and large cells, respectively, at a membrane potential of 140 mV). Conclusions: Corneal epithelial cells expressed K+ channel densities that were distinct from basal to superficial cells and from newborn to adult rabbits

    Hemodynamic and electromechanical effects of paraquat in rat heart.

    No full text
    Paraquat (PQ) is a highly lethal herbicide. Ingestion of large quantities of PQ usually results in cardiovascular collapse and eventual mortality. Recent pieces of evidence indicate possible involvement of oxidative stress- and inflammation-related factors in PQ-induced cardiac toxicity. However, little information exists on the relationship between hemodynamic and cardiac electromechanical effects involved in acute PQ poisoning. The present study investigated the effects of acute PQ exposure on hemodynamics and electrocardiogram (ECG) in vivo, left ventricular (LV) pressure in isolated hearts, as well as contractile and intracellular Ca2+ properties and ionic currents in ventricular myocytes in a rat model. In anesthetized rats, intravenous PQ administration (100 or 180 mg/kg) induced dose-dependent decreases in heart rate, blood pressure, and cardiac contractility (LV +dP/dtmax). Furthermore, PQ administration prolonged the PR, QRS, QT, and rate-corrected QT (QTc) intervals. In Langendorff-perfused isolated hearts, PQ (33 or 60 μM) decreased LV pressure and contractility (LV +dP/dtmax). PQ (10-60 μM) reduced the amplitudes of Ca2+ transients and fractional cell shortening in a concentration-dependent manner in isolated ventricular myocytes. Moreover, whole-cell patch-clamp experiments demonstrated that PQ decreased the current amplitude and availability of the transient outward K+ channel (Ito) and altered its gating kinetics. These results suggest that PQ-induced cardiotoxicity results mainly from diminished Ca2+ transients and inhibited K+ channels in cardiomyocytes, which lead to LV contractile force suppression and QTc interval prolongation. These findings should provide novel cues to understand PQ-induced cardiac suppression and electrical disturbances and may aid in the development of new treatment modalities

    Risks in Induction of Platelet Aggregation and Enhanced Blood Clot Formation in Platelet Lysate Therapy: A Pilot Study

    No full text
    Platelet concentrates (PCs) are widely used in regenerative medicine; as it is produced from freeze–thawing PC, platelet lysate (PL) has a longer shelf life. The thrombotic risk of PL therapy needs to be explored since PL and PC contain cytokines that contribute to platelet aggregation and thrombus formation. Whole blood samples of 20 healthy subjects were collected; PL was produced from PCs with expired shelf life through freeze–thawing. The direct mixing of PL with platelet-rich plasma (PRP) or whole blood was performed. In addition, rotational thromboelastometry (ROTEM) was used to investigate whether PL enhanced coagulation in vitro; the effects of fibrinogen depletion and anticoagulants were evaluated to prevent hypercoagulation. The results showed that PL induced platelet aggregation in both PRP and whole blood. In ROTEM assays, PL was shown to cause a significantly lower clotting onset time (COT) and clot formation time (CFT), and a significantly greater α angle and maximum clot firmness (MCF). Compared with the controls, which were 1:1 mixtures of normal saline and whole blood, fibrinogen depletion of PL showed no significant difference in CFT, α angle and MCF. Moreover, heparin- and rivaroxaban-added PL groups demonstrated no clot formation in ROTEM assays. Platelet lysate-induced hypercoagulability was demonstrated in vitro in the present study, which could be prevented by fibrinogen depletion or the addition of an anticoagulant

    Aldehyde Dehydrogenase 2 (ALDH2) Deficiency, Obesity, and Atrial Fibrillation Susceptibility: Unraveling the Connection

    No full text
    Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-β1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-β1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF–ALDH2 relationship in the setting of obesity

    Derangements and Reversibility of Energy Metabolism in Failing Hearts Resulting from Volume Overload: Transcriptomics and Metabolomics Analyses

    No full text
    Derangements in cardiac energy metabolism have been shown to contribute to the development of heart failure (HF). This study combined transcriptomics and metabolomics analyses to characterize the changes and reversibility of cardiac energetics in a rat model of cardiac volume overload (VO) with the creation and subsequent closure of aortocaval fistula. Male Sprague&ndash;Dawley rats subjected to an aortocaval fistula surgery for 8 and 16 weeks exhibited characteristics of compensated hypertrophy (CH) and HF, respectively, in echocardiographic and hemodynamic studies. Glycolysis was downregulated and directed to the hexosamine biosynthetic pathway (HBP) and O-linked-N-acetylglucosaminylation in the CH phase and was further suppressed during progression to HF. Derangements in fatty acid oxidation were not prominent until the development of HF, as indicated by the accumulation of acylcarnitines. The gene expression and intermediates of the tricarboxylic acid cycle were not significantly altered in this model. Correction of VO largely reversed the differential expression of genes involved in glycolysis, HBP, and fatty acid oxidation in CH but not in HF. Delayed correction of VO in HF resulted in incomplete recovery of defective glycolysis and fatty acid oxidation. These findings may provide insight into the development of innovative strategies to prevent or reverse metabolic derangements in VO-induced HF

    Multiple Cellular Electrophysiological Effects of a Novel Antiarrhythmic Furoquinoline Derivative HA-7 [ N

    No full text

    A Novel <i>KCNH2</i> S981fs Mutation Identified by Whole-Exome Sequencing Is Associated with Type 2 Long QT Syndrome

    No full text
    KCNH2 loss-of-function mutations cause long QT syndrome type 2 (LQT2), an inherited cardiac disorder associated with life-threatening ventricular arrhythmia. Through whole-exome sequencing, we discovered a novel AGCGACAC deletion (S981fs) in the hERG gene of an LQT2 patient. Using a heterologous expression system and patch clamping, we found that the mutant K channel had reduced cell surface expression and lower current amplitude compared to the wild type. However, functional expression was restored by lowering temperature and using potassium channel inhibitors or openers (E4031, cisapride, nicorandil). Co-immunoprecipitation experiments confirmed the assembly of mutant proteins with wild-type hERG. Confocal imaging showed decreased hERG distribution on the cell membrane in cells expressing S981fs. Notably, treatment with G418 significantly increased hERG current in wild-type/S981fs heterozygotes. In conclusion, our study identifies a novel hERG mutation leading to impaired Kv11.1 function due to trafficking and nonsense-mediated RNA decay defects. These findings shed light on the mechanisms underlying LQT2 and offer potential therapeutic avenues
    corecore