6 research outputs found

    Quantification of Myocardial Blood Flow in Absolute Terms Using (82)Rb PET Imaging: The RUBY-10 Study.

    Get PDF
    OBJECTIVES: The purpose of this study was to compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) estimates from rubidium-82 positron emission tomography ((82)Rb PET) data using 10 software packages (SPs) based on 8 tracer kinetic models. BACKGROUND: It is unknown how MBF and MFR values from existing SPs agree for (82)Rb PET. METHODS: Rest and stress (82)Rb PET scans of 48 patients with suspected or known coronary artery disease were analyzed in 10 centers. Each center used 1 of 10 SPs to analyze global and regional MBF using the different kinetic models implemented. Values were considered to agree if they simultaneously had an intraclass correlation coefficient >0.75 and a difference <20% of the median across all programs. RESULTS: The most common model evaluated was the Ottawa Heart Institute 1-tissue compartment model (OHI-1-TCM). MBF values from 7 of 8 SPs implementing this model agreed best. Values from 2 other models (alternative 1-TCM and Axially distributed) also agreed well, with occasional differences. The MBF results from other models (e.g., 2-TCM and retention) were less in agreement with values from OHI-1-TCM. CONCLUSIONS: SPs using the most common kinetic model-OHI-1-TCM-provided consistent results in measuring global and regional MBF values, suggesting that they may be used interchangeably to process data acquired with a common imaging protocol

    One-tissue compartment model for myocardial perfusion quantification with N-13 ammonia PET provides matching results: A cross-comparison between Carimas, FlowQuant, and PMOD.

    No full text
    To cross-compare three software packages (SPs)-Carimas, FlowQuant, and PMOD-to quantify myocardial perfusion at global, regional, and segmental levels. Stress N-13 ammonia PET scans of 48 patients with HCM were analyzed in three centers using Carimas, FlowQuant, and PMOD. Values agreed if they had an ICC > 0.75 and a difference < 20% of the median across all observers. When using 1TCM on the global level, the agreement was good, and the maximum difference between 1TCM MBF values was 17.2% (ICC = 0.83). On the regional level, the agreement was acceptable except in the LCx region (25.5% difference, ICC = 0.74) between FlowQuant and PMOD. Carimas-1TCM agreed well with PMOD-1TCM and FlowQuant-1TCM. Values obtained with FlowQuant-1TCM had a somewhat lesser agreement with PMOD-1TCM, especially at the segmental level. The global and regional MBF values (with one exception) agree well between the different software packages. There is significant variability in segmental values, mainly located in the LCx region and segments. Out of the studied tools, Carimas can be used interchangeably with both PMOD and FlowQuant for 1TCM implementation on all levels-global, regional, and segmental

    Myocardial perfusion quantification with Rb-82 PET: good interobserver agreement of Carimas software on global, regional, and segmental levels.

    No full text
    To estimate the interobserver agreement of the Carimas software package (SP) on global, regional, and segmental levels for the most widely used myocardial perfusion PET tracer-Rb-82. Rest and stress Rb-82 PET scans of 48 patients with suspected or known coronary artery disease (CAD) were analyzed in four centers using the Carimas SP. We considered values to agree if they simultaneously had an intraclass correlation coefficient (ICC) > 0.75 and a difference < 20% of the median across all observers. The median values on the segmental level were 1.08 mL/min/g for rest myocardial blood flow (MBF), 2.24 mL/min/g for stress MBF, and 2.17 for myocardial flow reserve (MFR). For the rest MBF and MFR, all the values at all the levels fulfilled were in excellent agreement. For stress MBF, at the global and regional levels, all the 24 comparisons showed excellent agreement. Only 1 out of 102 segmental comparisons (seg. 14) was over the adequate agreement limit-23.5% of the median value (ICC = 0.95). Interobserver agreement for Rb-82 PET myocardial perfusion quantification analyzed with Carimas is good at any LV segmentation level-global, regional, and segmental. It is good for all the estimates-rest MBF, stress MBF, and MFR
    corecore