103 research outputs found

    The Spectroscopic Properties of Ly{\alpha}-Emitters at z \approx 2.7: Escaping Gas and Photons from Faint Galaxies

    Get PDF
    We present a spectroscopic survey of 318 faint (R27(R\sim 27, L0.1L)L\sim0.1L_*), Ly{\alpha}-emission-selected galaxies (LAEs) at 2.5<z<3. A sample of 32 LAEs with rest-frame optical spectra from Keck/MOSFIRE are used to interpret the LAE spectra in the context of their systemic redshifts. We find that the Ly{\alpha} emission of LAEs is typically less spectrally extended than among samples of more luminous continuum-selected galaxies (LBGs) at similar redshifts. Using the MOSFIRE subsample, we find that the peak of the Ly{\alpha} line is shifted by +200 km/s with respect to systemic across a diverse set of galaxies including both LAEs and LBGs. We also find a small number of objects with significantly blueshifted Ly{\alpha} emission, a potential indicator of accreting gas. The Ly{\alpha}-to-H{\alpha} line ratios suggest that the LAEs have Ly{\alpha} escape fractions fesc,Lyα30f_{\rm esc,Ly{\alpha}} \approx 30%, significantly higher than typical LBG samples. Using redshifts calibrated by our MOSFIRE sample, we construct composite LAE spectra, finding the first evidence for metal-enriched outflows in such intrinsically-faint high-redshift galaxies. These outflows have smaller continuum covering fractions (fc0.3)(f_c \approx 0.3) and velocities (vave100200(v_{\rm ave} \approx 100-200 km/s, vmax500v_{\rm max} \approx 500 km/s)) than those associated with typical LBGs, suggesting that gas covering fraction is a likely driver of the high Ly{\alpha} and Ly-continuum escape fractions of LAEs. Our results suggest a similar scaling of outflow velocity with star formation rate as is observed at lower redshifts (voutflowSFR0.25)(v_{\rm outflow} \sim {\rm SFR}^{0.25}) and indicate that a substantial fraction of gas is ejected with v>vescv > v_{esc}

    The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift <z>=2.4

    Get PDF
    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM, CGM) at =2.4. Using Voigt profile fits to the full Lyman alpha and Lyman beta forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with HI column densities 14≾log(N_(HI))≾ 17.2. We also present the first measurements of the frequency distribution of HI absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al. (2012), we find that there are fractionally more high-N_(HI) absorbers than low-N_(HI) absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log(N_(HI)) 17.2 requires a broken power law parameterization of the frequency distribution with a break near log(N^(HI))≈10^(15)cm^(-2). We compute new estimates of the mean free path λ_(mfp) to hydrogen-ionizing photons at Z_(em)=2.4, finding λ_(mfp) = 147 + 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λ_(mfp) = 121 + 15 Mpc. These λ_(mfp) measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z≈2-3

    The Rest-frame Optical Spectroscopic Properties of Lyα-emitters at z~2.5: The Physical Origins of Strong Lyα Emission

    Get PDF
    We present the rest-frame optical spectroscopic properties of 60 faint (R_(AB) ~ 27; L ~ 0.1 L_*) Lyα-selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Lyα emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Lyα photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2–3. In particular, the LAEs have extremely high [O iii] λ5008/Hβ ratios (log([O iii]/Hβ) ~ 0.8) and low [N ii] λ6585/Hα ratios (log([N ii]/Hα) < 1.15). Coupled with a detection of the [O iii] λ4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T_e ≈ 1.8 × 10^4 K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z_(neb) ≈ 0.22Z_⊙), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9–7.4 (Z_(neb) ≈ 0.02–0.05Z_⊙). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Lyα emission across the largest current sample of combined Lyα and rest-optical galaxy spectroscopy, including both the 60 KBSS-Lyα LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Lyα emissivity (parameterized by the Lyα equivalent width) is strongly correlated with nebular excitation and ionization properties and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content

    A carbon-enhanced metal-poor damped Lyα system: probing gas from Population III nucleosynthesis?

    Get PDF
    We present high-resolution observations of an extremely metal-poor damped Lyα system (DLA), at z_(abs) = 2.340 0972 in the spectrum of the QSO J0035−0918, exhibiting an abundance pattern consistent with model predictions for the supernova yields of Population III stars. Specifically, this DLA has [Fe/H]≃−3, shows a clear ‘odd–even’ effect, and is C-rich with [C/Fe]=+1.53, a factor of ∼20 greater than reported in any other DLA. In analogy to the carbon-enhanced metal-poor stars in the Galactic halo (with [C/Fe] > +1.0), this is the first known case of a carbon-enhanced DLA. We determine an upper limit to the mass of ^(12)C, M(^(12)C) ≤ 200 M_⊙, which depends on the unknown gas density n(H); if n(H) > 1 cm^(−3) (which is quite likely for this DLA given its low velocity dispersion), then M(^(12)C) ≤ 2 M_⊙, consistent with pollution by only a few prior supernovae. We speculate that DLAs such as the one discovered here may represent the ‘missing link’ between the yields of Population III stars and their later incorporation in the class of carbon-enhanced metal-poor stars which show no enhancement of neutron-capture elements (CEMP-no stars)

    The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime

    Get PDF
    We present a high spectral resolution survey of the most metal-poor damped Lyα absorption systems (DLAs) aimed at probing the nature and nucleosynthesis of the earliest generations of stars. Our survey comprises 22 systems with iron abundance less than 1/100 solar; observations of seven of these are reported here for the first time. Together with recent measures of the abundances of C and O in Galactic metal-poor stars, we reinvestigate the trend of C/O in the very metal-poor (VMP) regime and we compare, for the first time, the O/Fe ratios in the most metal-poor DLAs and in halo stars. We confirm the near-solar values of C/O in DLAs at the lowest metallicities probed, and find that their distribution is in agreement with that seen in Galactic halo stars. We find that the O/Fe ratio in VMP DLAs is essentially constant, and shows very little dispersion, with a mean [〈O/Fe〉]=+0.39 ± 0.12, in good agreement with the values measured in Galactic halo stars when the oxygen abundance is measured from the [O i] λ6300 line. We speculate that such good agreement in the observed abundance trends points to a universal origin for these metals. In view of this agreement, we construct the abundance pattern for a typical VMP DLA and compare it to model calculations of Population II and Population III nucleosynthesis to determine the origin of the metals in VMP DLAs. Our results suggest that the most metal-poor DLAs may have been enriched by a generation of metal-free stars; however, given that abundance measurements are currently available for only a few elements, we cannot yet rule out an additional contribution from Population II stars

    Measuring the Physical Conditions in High-redshift Star-forming Galaxies: Insights from KBSS-MOSFIRE

    Get PDF
    We use photoionization models that are designed to reconcile the joint rest-UV-optical spectra of high-z star-forming galaxies to self-consistently infer the gas chemistry and nebular ionization and excitation conditions for ~150 galaxies from the Keck Baryonic Structure Survey (KBSS), using only observations of their rest-optical nebular spectra. We find that the majority of z ~ 2–3 KBSS galaxies are moderately O-rich, with an interquartile range in 12 + log(O/H) = 8.29–8.56, and have significantly sub-solar Fe enrichment, with an interquartile range of [Fe/H] = [−0.79, −0.53], which contributes additional evidence in favor of super-solar O/Fe in high-z galaxies. The model-inferred ionization parameters and N/O are strongly correlated with common strong-line indices (such as O32 and N2O2), with the latter exhibiting similar behavior to local extragalactic H ii regions. In contrast, diagnostics commonly used for measuring gas-phase O/H (such as N2 and O3N2) show relatively large scatter with the overall amount of oxygen present in the gas and behave differently than observed at z ~ 0. We provide a new calibration for using R23 to measure O/H in typical high-z galaxies, although it is most useful for relatively O-rich galaxies; combining O32 and R23 does not yield a more effective calibration. Finally, we consider the implications for the intrinsic correlations between physical conditions across the galaxy sample and find that N/O varies with O/H in high-z galaxies in a manner that is almost identical to local H ii regions. However, we do not find a strong anti-correlation between ionization parameter and metallicity (O/H or Fe/H) in high-z galaxies, which is one of the principal bases for using strong-line ratios to infer oxygen abundance

    Detection of hot, metal-enriched outflowing gas around zz\approx\,2.3 star-forming galaxies in the Keck Baryonic Structure Survey

    Get PDF
    We use quasar absorption lines to study the physical conditions in the circumgalactic medium of redshift z2.3z\approx 2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey (KBSS). In Turner et al. 2014 we used the pixel optical depth technique to show that absorption by HI and the metal ions OVI, NV, CIV, CIII and SiIV is strongly enhanced within Δv170|\Delta v|\lesssim170 km/s and projected distances d180|d|\lesssim180 proper kpc from sightlines to the background quasars. Here we demonstrate that the OVI absorption is also strongly enhanced at fixed HI, CIV, and SiIV optical depths, and that this enhancement extends out to 350\sim350 km/s. At fixed HI the increase in the median OVI optical depth near galaxies is 0.3-0.7 dex and is detected at 2--3-σ\sigma confidence for all seven HI bins that have log10τHI1.5\log_{10}\tau_{\rm HI}\ge-1.5. We use ionization models to show that the observed strength of OVI as a function of HI is consistent with enriched, photoionized gas for pixels with τHI10\tau_{\rm HI}\gtrsim10. However, for pixels with τHI1\tau_{\rm HI} \lesssim 1 this would lead to implausibly high metallicities at low densities if the gas were photoionized by the background radiation. This indicates that the galaxies are surrounded by gas that is sufficiently hot to be collisionally ionized (T>105T > 10^5\,K) and that a substantial fraction of the hot gas has a metallicity 101\gtrsim 10^{-1} of solar. Given the high metallicity and large velocity extent (out to 1.5×vcirc\sim1.5\times v_{\rm circ}) of this gas, we conclude that we have detected hot, metal enriched outflows arising from star-forming galaxies.Comment: Accepted for publication in MNRAS, 14 pages, 9 figures (not including appendices
    corecore