8 research outputs found

    Effect of Porcine Whole Blood Protein Hydrolysate on Slow-Twitch Muscle Fiber Expression and Mitochondrial Biogenesis via the AMPK/SIRT1 Pathway

    No full text
    Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway

    Utilization of Phytochemical and Molecular Diversity to Develop a Target-Oriented Core Collection in Tea Germplasm

    No full text
    Tea has received attention due to its phytochemicals. For the direct use of tea germplasm in breeding programs, a core collection that retains the genetic diversity and various phytochemicals in tea is needed. In this study, we evaluated the content of eight phytochemicals over two years and the genetic diversity through 33 SSR (simple sequence repeats) markers for 462 tea accessions (entire collection, ENC) and developed a target-oriented core collection (TOCC). Significant phytochemical variation was observed in the ENC between genotypes and years. The genetic diversity of ENC showed high levels of molecular variability. These results were incorporated into developing TOCCs. The TOCC showed a representation of the ENC, where the mean difference percentage, the variance difference percentage, the variable rate of coefficient of variance percentage, and the coincidence rate of range percentage were 7.88, 39.33, 120.79, and 97.43, respectively. The Shannon’s diversity index (I) and Nei’s gene diversity (H) of TOCC were higher than those of ENC. Furthermore, the accessions in TOCC were shown to be selected proportionally, thus accurately reflecting the distribution of the overall accessions for each phytochemical. This is the first report describing the development of a TOCC retaining the diversity of phytochemicals in tea germplasm. This TOCC will facilitate the identification of the genetic determinants of trait variability and the effective utilization of phytochemical diversity in crop improvement programs

    Impressic Acid Ameliorates Atopic Dermatitis-Like Skin Lesions by Inhibiting ERK1/2-Mediated Phosphorylation of NF-κB and STAT1

    No full text
    Impressic acid (IPA), a lupane-type triterpenoid from Acanthopanax koreanum, has many pharmacological activities, including the attenuation of vascular endothelium dysfunction, cartilage destruction, and inflammatory diseases, but its influence on atopic dermatitis (AD)-like skin lesions is unknown. Therefore, we investigated the suppressive effect of IPA on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin symptoms in mice and the underlying mechanisms in cells. IPA attenuated the DNCB-induced increase in the serum concentrations of IgE and thymic stromal lymphopoietin (TSLP), and in the mRNA levels of thymus and activation regulated chemokine (TARC), macrophage derived chemokine (MDC), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) in mice. Histopathological analysis showed that IPA reduced the epidermal/dermal thickness and inflammatory and mast cell infiltration of ear tissue. In addition, IPA attenuated the phosphorylation of NF-κB and IκBα, and the degradation of IκBα in ear lesions. Furthermore, IPA treatment suppressed TNF-α/IFN-γ-induced TARC expression by inhibiting the NF-κB activation in cells. Phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) and the signal transducer and activator of transcription 1 (STAT1), the upstream signaling proteins, was reduced by IPA treatment in HaCaT cells. In conclusion, IPA ameliorated AD-like skin symptoms by regulating cytokine and chemokine production and so has therapeutic potential for AD-like skin lesions

    Analysis of Nanotoxicity with Integrated Omics and Mechanobiology

    No full text
    Nanoparticles (NPs) in biomedical applications have benefits owing to their small size. However, their intricate and sensitive nature makes an evaluation of the adverse effects of NPs on health necessary and challenging. Since there are limitations to conventional toxicological methods and omics analyses provide a more comprehensive molecular profiling of multifactorial biological systems, omics approaches are necessary to evaluate nanotoxicity. Compared to a single omics layer, integrated omics across multiple omics layers provides more sensitive and comprehensive details on NP-induced toxicity based on network integration analysis. As multi-omics data are heterogeneous and massive, computational methods such as machine learning (ML) have been applied for investigating correlation among each omics. This integration of omics and ML approaches will be helpful for analyzing nanotoxicity. To that end, mechanobiology has been applied for evaluating the biophysical changes in NPs by measuring the traction force and rigidity sensing in NP-treated cells using a sub-elastomeric pillar. Therefore, integrated omics approaches are suitable for elucidating mechanobiological effects exerted by NPs. These technologies will be valuable for expanding the safety evaluations of NPs. Here, we review the integration of omics, ML, and mechanobiology for evaluating nanotoxicity

    Reduction in the Migration Activity of Microglia Treated with Silica-Coated Magnetic Nanoparticles and their Recovery Using Citrate

    No full text
    Nanoparticles have garnered significant interest in neurological research in recent years owing to their efficient penetration of the blood–brain barrier (BBB). However, significant concerns are associated with their harmful effects, including those related to the immune response mediated by microglia, the resident immune cells in the brain, which are exposed to nanoparticles. We analysed the cytotoxic effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in a BV2 microglial cell line using systems toxicological analysis. We performed the invasion assay and the exocytosis assay and transcriptomics, proteomics, metabolomics, and integrated triple-omics analysis, generating a single network using a machine learning algorithm. The results highlight alteration in the mechanisms of the nanotoxic effects of nanoparticles using integrated omics analysis

    Preoperative sequential short-course radiation therapy and FOLFOX chemotherapy versus long-course chemoradiotherapy for locally advanced rectal cancer: a multicenter, randomized controlled trial (SOLAR trial)

    No full text
    Abstract Background Preoperative (chemo)radiotherapy has been widely used as an effective treatment for locally advanced rectal cancer (LARC), leading to a significant reduction in pelvic recurrence rates. Because early administration of intensive chemotherapy for LARC has more advantages than adjuvant chemotherapy, total neoadjuvant therapy (TNT) has been introduced and evaluated to determine whether it can improve tumor response or treatment outcomes. This study aims to investigate whether short-course radiotherapy (SCRT) followed by intensive chemotherapy improves oncologic outcomes compared with traditional preoperative long-course chemoradiotherapy (CRT). Methods A multicenter randomized phase II trial involving 364 patients with LARC (cT3–4, cN+, or presence of extramural vascular invasion) will be conducted. Patients will be randomly assigned to the experimental or control arm at a ratio of 1:1. Participants in the experimental arm will receive SCRT (25 Gy in 5 fractions, daily) followed by four cycles of FOLFOX (oxaliplatin, 5-fluorouracil, and folinic acid) as a neoadjuvant treatment, and those in the control arm will receive conventional radiotherapy (45–50.4 Gy in 25–28 fractions, 5 times a week) concurrently with capecitabine or 5-fluorouracil. As a mandatory surgical procedure, total mesorectal excision will be performed 2–5 weeks from the last cycle of chemotherapy in the experimental arm and 6–8 weeks after the last day of radiotherapy in the control arm. The primary endpoint is 3-year disease-free survival, and the secondary endpoints are tumor response, overall survival, toxicities, quality of life, and cost-effectiveness. Discussion This is the first Korean randomized controlled study comparing SCRT-based TNT with traditional preoperative LC-CRT for LARC. The involvement of experienced colorectal surgeons ensures high-quality surgical resection. SCRT followed by FOLFOX chemotherapy is expected to improve disease-free survival compared with CRT, with potential advantages in tumor response, quality of life, and cost-effectiveness. Trial registration This trial is registered at Clinical Research Information under the identifier Service KCT0004874 on April 02, 2020, and at Clinicaltrial.gov under the identifier NCT05673772 on January 06, 2023
    corecore