8 research outputs found

    Enhanced Single-Sided Ventilation with Overhang in Buildings

    No full text
    Enhancing the ventilation performance of energy-efficient buildings with single-sided openings is important because their ventilation performance is poor and strongly depends on the wind conditions. We considered an overhang as a potential building façade for improving the single-sided ventilation performance. We performed numerical simulations of three-dimensional unsteady turbulent flows over an idealized building with an overhang in order to investigate the effect of the overhang on the ventilation performance. Parametric studies were systematically carried out where the overhang length, wind speed, and wind direction were varied. The numerical results showed that the overhang drastically enhanced the ventilation rate in the windward direction regardless of the wind speed. This is because, for windward cases, the overhang produces a vortex with strong flow separation near the tip of the overhang, which promotes a net airflow exchange at the entrance and increases the ventilation rate. However, the ventilation rates for the leeward and side cases are slightly decreased with the overhang. Using an overhang with single-sided ventilation greatly reduces the local mean age of air (LMA) in the windward direction but increases it in the leeward direction

    Enhanced Single-Sided Ventilation with Overhang in Buildings

    No full text
    Enhancing the ventilation performance of energy-efficient buildings with single-sided openings is important because their ventilation performance is poor and strongly depends on the wind conditions. We considered an overhang as a potential building façade for improving the single-sided ventilation performance. We performed numerical simulations of three-dimensional unsteady turbulent flows over an idealized building with an overhang in order to investigate the effect of the overhang on the ventilation performance. Parametric studies were systematically carried out where the overhang length, wind speed, and wind direction were varied. The numerical results showed that the overhang drastically enhanced the ventilation rate in the windward direction regardless of the wind speed. This is because, for windward cases, the overhang produces a vortex with strong flow separation near the tip of the overhang, which promotes a net airflow exchange at the entrance and increases the ventilation rate. However, the ventilation rates for the leeward and side cases are slightly decreased with the overhang. Using an overhang with single-sided ventilation greatly reduces the local mean age of air (LMA) in the windward direction but increases it in the leeward direction

    Generation of Inflow Conditions in a Reynolds-Averaged Navier-Stokes Closure

    No full text

    Kinetic Analysis for the Catalytic Pyrolysis of Polypropylene over Low Cost Mineral Catalysts

    No full text
    A kinetic analysis of non-catalytic pyrolysis (NCP) and catalytic pyrolysis (CP) of polypropylene (PP) with different catalysts was performed using thermogravimetric analysis (TGA) and kinetic models. Three kinds of low-cost natural catalysts were used to maximize the cost-effectiveness of the process: natural zeolite (NZ), bentonite, olivine, and a mesoporous catalyst, Al-MCM-41. The decomposition temperature of PP and apparent activation energy (Ea) were obtained from the TGA results at multiple heating rates, and a model-free kinetic analysis was performed using the Flynn–Wall–Ozawa model. TGA indicated that the maximum decomposition temperature (Tmax) of the PP was shifted from 464 °C to 347 °C with Al-MCM-41 and 348 °C with bentonite, largely due to their strong acidity and large pore size. Although olivine had a large pore size, the Tmax of PP was only shifted to 456 °C, because of its low acidity. The differential TG (DTG) curve of PP over NZ revealed a two-step mechanism. The Tmax of the first peak on the DTG curve of PP with NZ was 376 °C due to the high acidity of NZ. On the other hand, that of the second peak was higher (474 °C) than the non-catalytic reaction. The Ea values at each conversion were also decreased when using the catalysts, except olivine. At <0.5 conversion, the Ea obtained from the CP of PP with NZ was lower than that with the other catalysts: Al-MCM-41, bentonite, and olivine, in that order. The Ea for the CP of PP with NZ increased more rapidly, to 193 kJ/mol at 0.9 conversion, than the other catalysts
    corecore