558 research outputs found

    Capsule network with shortcut routing

    Full text link
    This study introduces "shortcut routing," a novel routing mechanism in capsule networks that addresses computational inefficiencies by directly activating global capsules from local capsules, eliminating intermediate layers. An attention-based approach with fuzzy coefficients is also explored for improved efficiency. Experimental results on Mnist, smallnorb, and affNist datasets show comparable classification performance, achieving accuracies of 99.52%, 93.91%, and 89.02% respectively. The proposed fuzzy-based and attention-based routing methods significantly reduce the number of calculations by 1.42 and 2.5 times compared to EM routing, highlighting their computational advantages in capsule networks. These findings contribute to the advancement of efficient and accurate hierarchical pattern representation models.Comment: 8 pages, published at IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E104.A(8

    Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Get PDF
    To increase the heat capacity in lightweight construction materials, a phase change material (PCM) can be introduced to building elements. A thermally activated building system (TABS) with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results

    Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration.

    Get PDF
    The new concept of mammalian sex maintenance establishes that particular key genes must remain active in the differentiated gonads to avoid genetic sex reprogramming, as described in adult ovaries after Foxl2 ablation. Dmrt1 plays a similar role in postnatal testes, but the mechanism of adult testis maintenance remains mostly unknown. Sox9 and Sox8 are required for postnatal male fertility, but their role in the adult testis has not been investigated. Here we show that after ablation of Sox9 in Sertoli cells of adult, fertile Sox8(-/-) mice, testis-to-ovary genetic reprogramming occurs and Sertoli cells transdifferentiate into granulosa-like cells. The process of testis regression culminates in complete degeneration of the seminiferous tubules, which become acellular, empty spaces among the extant Leydig cells. DMRT1 protein only remains in non-mutant cells, showing that SOX9/8 maintain Dmrt1 expression in the adult testis. Also, Sox9/8 warrant testis integrity by controlling the expression of structural proteins and protecting Sertoli cells from early apoptosis. Concluding, this study shows that, in addition to its crucial role in testis development, Sox9, together with Sox8 and coordinately with Dmrt1, also controls adult testis maintenance
    corecore