1,278 research outputs found

    Rotating Black Hole Thermodynamics with a Particle Probe

    Full text link
    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultra-spinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.Comment: 14 page

    Horava-Lifshitz gravity: tighter constraints for the Kehagias-Sfetsos solution from new solar system data

    Full text link
    We analytically work out the perturbation induced by the Kehagias-Sfetsos (KS) space-time solution of the Horava-Lifshitz (HL) modified gravity at long distances on the two-body range for a pair of test particles A and B orbiting the same mass M. We apply our results to the most recently obtained range-residuals \delta\rho for some planets of the solar system (Mercury, Mars, Saturn) ranged from the Earth to effectively constrain the dimensionsless KS parameter \psi_0 for the Sun. We obtain \psi_0 >= 7.2 x 10^-10 (Mercury), \psi_0 >= 9 x 10^-12 (Mars), \psi_0 >= 1.7 x 10^-12 (Saturn). Such lower bounds are tighter than other ones existing in literature by several orders of magnitude. We also preliminarily obtain \psi_0 >= 8 x 10^-10 for the system constituted by the S2 star orbiting the Supermassive Black Hole (SBH) in the center of the Galaxy.Comment: LaTex2e, 15 pages, 1 table, 3 figures, 31 references. Version matching the one at press in International Journal of Modern Physics D (IJMPD

    Evolution of electromagnetic and Dirac perturbations around a black hole in Horava gravity

    Full text link
    The evolution of electromagnetic and Dirac perturbations in the spacetime geometry of Kehagias-Sfetsos(KS) black hole in the deformed Horava-Lifshitz(HL) gravity is investigated and the associated quasinormal modes are evaluated using time domain integration and WKB methods. We find a considerable deviation in the nature of field evolution in HL theory from that in the Schwarzschild spacetime and QNMs region extends over a longer time in HL theory before the power-law tail decay begins. The dependence of the field evolution on the HL parameter Ī±\alpha are studied. In the time domain picture we find that the length of QNM region increases with Ī±\alpha. But the late time decay of field follows the same power-law tail behavior as in the case of Schwarzschild black hole.Comment: The article was fully rewritten, references added, to appear in MPL

    Counteracting Selfish Nodes Using Reputation Based System in Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a group of nodes constituting a network of mobile nodes without predefined and pre-established architecture where mobile nodes can communicate without any dedicated access points or base stations. In MANETs, a node may act as a host as well as a router. Nodes in the network can send and receive packets through intermediate nodes. However, the existence of malicious and selfish nodes in MANETs severely degrades network performance. The identification of such nodes in the network and their isolation from the network is a challenging problem. Therefore, in this paper, a simple reputation-based scheme is proposed which uses the consumption and contribution information for selfish node detection and cooperation enforcement. Nodes failing to cooperate are detached from the network to save resources of other nodes with good reputation. The simulation results show that our proposed scheme outperforms the benchmark scheme in terms of NRL (normalized routing load), PDF (packet delivery fraction), and packet drop in the presence of malicious and selfish attacks. Furthermore, our scheme identifies the selfish nodes quickly and accurately as compared to the benchmark scheme

    Particle Probe of Horava-Lifshitz Gravity

    Full text link
    Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through particle geodesics. Gravitational force of KS black hole becomes weaker than that of Schwarzschild around horizon and interior space. Particles can be always scattered or trapped in new closed orbits, unlike those falling forever in Schwarzschild black. The properties of null and timelike geodesics are classified with values of coupling constants. The precession rates of the orbits are evaluated. The time trajectories are also classified under different values of coupling constants for both null and timelike geodesics. Physical phenomena that may be observable are discussed.Comment: 10 pages, 8 figure

    Moduli Dynamics of AdS_3 Strings

    Full text link
    We construct a general class of solutions for a classical string in AdS_3 spacetime. The construction is based on a Pohlmeyer type reduction, with the sinh-Gordon model providing the general N-soliton solutions. The corresponding exact spiky string configurations are then reconstructed through the inverse scattering method. It is shown that the string moduli are determined entirely by those of the solitons.Comment: 22 pages, no figures; references adde

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate Ī³\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qĖ‰q\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure
    • ā€¦
    corecore