53 research outputs found

    Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology?

    Get PDF
    Aim: Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease. Much of the complex symptomatology relates to pathology outside the classic white matter plaque, whereby lesions of the cortical grey matter, which are difficult to resolve by conventional clinical imaging, are in part predictive of outcome. We investigated the extent of grey matter pathology in whole coronal macrosections to reassess the contribution of cortical pathology to total demyelinating lesion area in progressive MS. Methods: Twenty-two cases of progressive MS were prepared as whole bi-hemispheric macrosections for histology, immunostaining and quantitative analysis of lesion number and relative area, leptomeningeal inflammation and microglial/macrophage activation. Results: Cortical grey matter demyelination was seen in all cases, which was more extensive than in white and deep grey matter (hippocampus, thalamus and basal ganglia) and accounted for 0.8%-60.2% of the entire measurable cortical ribbon. The pattern of cortical grey matter demyelination was predominantly subpial (mean 90.9%, range 60%-100%, of total cortical grey matter lesion area) and cases with the largest areas of subpial cortical lesions had more and larger deep grey matter lesions, greater numbers of activated microglia/macrophages, both in lesions as well as in normal cortical grey matter, together with elevated leptomeningeal inflammation and lymphoid-like structures. White matter lesion area was unchanged when compared with the progressive MS cases with little subpial cortical demyelination. Conclusion: Analysis of whole coronal macrosections reveals cortical demyelination is more extensive than reported by conventional histological methods. Cases of progressive MS with substantial subpial cortical demyelination that is independent of underlying white matter lesion area support the implications that these lesions may in-part arise through different pathogenetic mechanisms. Biomarkers and/or imaging correlates of this subpial pathology are required if we are to fully comprehend the clinical disease process

    Alzheimer's disease pathology explains association between dementia with Lewy bodies and APOE-ε4/TOMM40 long poly-T repeat allele variants.

    Get PDF
    Introduction: The role of TOMM40-APOE 19q13.3 region variants is well documented in Alzheimer's disease (AD) but remains contentious in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Methods: We dissected genetic profiles within the TOMM40-APOE region in 451 individuals from four European brain banks, including DLB and PDD cases with/without neuropathological evidence of AD-related pathology and healthy controls. Results: TOMM40-L/APOE-ε4 alleles were associated with DLB (OR TOMM40 -L = 3.61; P value = 3.23 × 10-9; OR APOE -ε4 = 3.75; P value = 4.90 × 10-10) and earlier age at onset of DLB (HR TOMM40 -L = 1.33, P value = .031; HR APOE -ε4 = 1.46, P value = .004), but not with PDD. The TOMM40-L/APOE-ε4 effect was most pronounced in DLB individuals with concomitant AD pathology (OR TOMM40 -L = 4.40, P value = 1.15 × 10-6; OR APOE -ε4 = 5.65, P value = 2.97 × 10-8) but was not significant in DLB without AD. Meta-analyses combining all APOE-ε4 data in DLB confirmed our findings (ORDLB = 2.93, P value = 3.78 × 10-99; ORDLB+AD = 5.36, P value = 1.56 × 10-47). Discussion: APOE-ε4/TOMM40-L alleles increase susceptibility and risk of earlier DLB onset, an effect explained by concomitant AD-related pathology. These findings have important implications in future drug discovery and development efforts in DLB

    Interferon-γ Activates Nuclear Factor-κ B in Oligodendrocytes through a Process Mediated by the Unfolded Protein Response

    Get PDF
    Our previous studies have demonstrated that the effects of the immune cytokine interferon-γ (IFN-γ) in immune-mediated demyelinating diseases are mediated, at least in part, by the unfolded protein response (UPR) in oligodendrocytes. Data indicate that some biological effects of IFN-γ are elicited through activation of the transcription factor nuclear factor-κB (NF-κB). Interestingly, it has been shown that activation of the pancreatic endoplasmic reticulum kinase (PERK) branch of the UPR triggers NF-κB activation. In this study, we showed that IFN-γ-induced NF-κB activation was associated with activation of PERK signaling in the oligodendroglial cell line Oli-neu. We further demonstrated that blockage of PERK signaling diminished IFN-γ-induced NF-κB activation in Oli-neu cells. Importantly, we showed that NF-κB activation in oligodendrocytes correlated with activation of PERK signaling in transgenic mice that ectopically express IFN-γ in the central nervous system (CNS), and that enhancing IFN-γ-induced activation of PERK signaling further increased NF-κB activation in oligodendrocytes. Additionally, we showed that suppression of the NF-κB pathway rendered Oli-neu cells susceptible to the cytotoxicity of IFN-γ, reactive oxygen species, and reactive nitrogen species. Our results indicate that the UPR is involved in IFN-γ-induced NF-κB activation in oligodendrocytes and suggest that NF-κB activation by IFN-γ represents one mechanism by which IFN-γ exerts its effects on oligodendrocytes in immune-mediated demyelinating diseases

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link

    Inflammatory cascades in the pathogenesis of multiple sclerosis

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN030507 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore