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Main 

Selective degeneration of dopaminergic neurons in the substantia 
nigra pars compacta (SNpc) leads to the motor symptoms of Parkinson’s 
disease [1]. The neighbouring dopaminergic neurons in the ventral 
tegmentum area (VTA) and other areas are relatively spared from 
degeneration in the early stages of the disease. The SNpc neurons are 
highly arborised axons with a persistent firing rate that impose a high 
cellular energetic demand [2,3]. These properties of the neurons stem 
from their differential gene expression profile [4,5]. The robust pace
making activity of SNpc neurons, for example, is regulated by the 
voltage-gated Ca2+ channels, while that of the VTA is mediated by 
voltage-dependent sodium channels [6–8]. 

Pacemaker activity of SNpc neurons results in broad action potentials 
allowing Ca2+ influx through voltage-gated Ca2+ channels, possibly pre- 
disposing them to degeneration. These observations motivated a clinical 
trial of isradipine, the most potent of the clinically available dihy
dropyridine L-type calcium channel antagonist with excellent central 
nervous system penetration [9]. Amongst other reasons, the failure of 
this trial may have actually been due to the selectivity of the drug to the 
L-type channels, allowing currents through from other voltage-gated 
Ca2+ channels. For example, in SNpc neurons, Cav2.3 (R-type) chan
nels account for 50% of Ca2+ flux into the soma [10,11]. Furthermore, 
Cav2.3 expression increases with age, unlike L-type calcium channels 
which decrease in an age-dependent manner [11–13]. Cav2.3 levels 
were also higher in rodent SNpc neurons compared with the VTA [11]. 
These spatio-temporal changes in Cav2.3 expression suggest a more 
significant role for R-type channels in the vulnerability of SNpc neurons 
than may have been recognised before the STEADY-PD III trial [9,14]. 

Here we examined the expression of CAV2.3 in the healthy and PD 
brains to motivate a more rational consideration of drugs targeting R- 

type channel contribution to neuronal degeneration. We quantitatively 
examined the distribution of Cav2.3 α1-subunit (CACNA1E) in tyrosine- 
hydroxylase-stained midbrain sections in 6 normal brains (2 males and 4 
females; 79.7 ± 9.6 years) and 9 PD brains (5 males and 4 females; 75.0 
± 5.3 years; Supple. Table 1). In patients with Parkinson’s disease, we 
found that Cav2.3 expression in SNpc neurons (M = 26.20 ± 1.22 AFU 
arbitrary fluorescent units (AFU)) was significantly elevated compared 
with expression in the neighbouring VTA (M = 16.20 ± 0.75 AFU). In 
control brains, however, there was no statistically significant difference 
in CAV2.3 expression amongst the dopaminergic neurons in either re
gion (Fig. 1). Qualitatively, as noted in rodent studies [11,15], we 
confirmed that CAV2.3 is predominantly restricted to the soma and the 
proximal hillock region in human neurons. 

Failure of the recent STEADY-PD III trial was predominantly attrib
uted to a low dose of the dihydropyridine Isradipine (5.0 mg twice a 
day). This drug and the dose were selected based on tolerability (safety) 
and relative affinity for L-type calcium channels. However, drug 
underdosing as the primary cause of limited trial efficacy fails to 
consider the contribution of the other Ca2+ channel types to calcium 
overload and neurodegeneration. Recent studies in an animal model of 
PD suggest R-type channels as an important contributor to the selective 
vulnerability and degeneration of SNpc neurons [11]. Our results extend 
these observations to humans by showing that CAV2.3 expression is 
increased in the SNpc of patients with Parkinson’s disease and seems to 
be located predominantly in the soma of the neurons, as seen in the 
animal studies. In light of these observations, one might argue that 
treatment of PD with a less selective calcium channel blocker, targeting 
both L- and R-type channels and aimed at maximal elimination of the 
calcium overload, would result in enhanced neuroprotection. For 
example, in large epidemiological studies, less selective dihydropyr
idines such as amlodipine and nifedipine have been shown to reduce the 
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risk of Parkinson’s disease by up to 30%. Of these, the one with broad 
coverage (for L- and R-type) and the highest known affinity for R-type 
channels is nicardipine (IC50 < 1.0 µM) [16,17]. This drug is particu
larly well-tolerated at high oral doses with an excellent safety profile 
[18]. In short, if the calcium channel neuroprotection hypothesis is 
correct in humans, then nicardipine seems the most likely of the existing 
dihydropyridines to prove it. 

Methods 

Subjects 

Formalin-fixed, paraffin wax-embedded, slide-mounted brain sec
tions from 6 control subjects (2 males and 4 females) and 9 PD patients 
(5 males and 4 females) were provided by the Parkinson’s UK Tissue 
Bank at Imperial College (Supple Table 1). All subjects consented to 
donate their brains after death. The mean age of control individuals was 
years (range 66–88 years) and the mean age of PD patients was 79.7 ±
9.6 75.0 ± 5.3 years (range 69–83 years). Cases were selected based on 
pathology reports and were matched for age, disease duration (PD 10.5 
± 3.9 years) and postmortem interval of tissue (control: 37.3 ± 13.2 h, 
PD: 24.2 ± 11.4 h). Clinical diagnosis of PD was confirmed by neuro
pathological analysis. Control cases demonstrated no PD pathology, 
with clear pigmentation in the SNpc, and did not meet diagnostic criteria 
for PD or Alzheimer’s disease (AD) apart from 1 control case (CO4) 
which was clinically diagnosed with AD. PD cases had prolonged PD, 
characterised by motor and cognitive impairments, such as depression 
and mood disturbances (Mallach et al., 2019). The SNpc was pale, 
indicating DA neuron loss, and Lewy Bodies were present. All of the PD 
cases had Lewy Body pathology confined to the brainstem. AD-like pa
thology was seen in 2 PD cases. During neuropathological analysis, the 
grade of α-synuclein pathology was rated and cases were chosen with an 
α-synuclein Braak stage of 3, representing early PD (Braak et al., 2003). 

Immunohistochemistry 

Immunohistochemistry, image acquisition and analysis were per
formed according to our published protocol [19]. Briefly, heat-induced 
epitope retrieval was performed on 10 µm thick formalin-fixed paraffi
n-embedded sections by bathing the slides in ethylenediaminetetra
acetic acid buffer (1 mM EDTA, pH 8) and heated. The slides were then 
blocked at room temperature with blocking buffer (2% goat serum, 0.3% 
triton in PBS) for 1 h and incubated overnight at room temperature with 
chicken anti-tyrosine hydroxylase (1:100, RayBiotech, USA) and rabbit 
anti-CAV2.3 (1:50, Abbkine Scientific, USA) antibodies. Secondary 

antibodies 1:1000, (Santa Cruz Biotechnology, USA) were applied for 1 
h at room temperature. The slides were blocked with Sudan Black (0.1% 
Sudan Black, 70% ethanol) for 10 min and washed for 10 min with 
water. The nuclei were stained by incubation in 4′,6-dia
midino-2-phenylindole (DAPI, 0.5 µg/ml) solution for 10 min. The tissue 
was mounted using Vectashield (Vecta Laboratories, UK). 

Image acquisition and analysis 

Images were acquired by using a Leica DMi8 Microscope and Leica 
DMi8 and the Leica application suite X (Leica Micro-systems, Wetzlar, 
Germany) and a 40x oil-based immersion objective. Z-stacks of at least 
one randomly selected area from SNpc and VTA were acquired, with an 
interval of 0.27 µm along the z-axis. Z-stacks were averaged and quan
titative analysis of fluorescence intensity was performed using the 
elliptical selection tool in ImageJ (National Institutes of Health, Mary
land, USA). 10 randomly selected areas within each tyrosine 
hydroxylase-positive neuron were used for quantification. The param
eters of selection tool were kept constant throughout. Average signal 
intensities of the fluorescent antibody in individual TH+ SNpc and VTA 
neurons were determined using ImageJ software and recorded in Excel. 
Values were expressed as the mean ± standard error of the mean (S.E. 
M.). The statistical analysis was performed using Graphpad Prism. 
Means were determined for each of the groups (CTL, PD) and the 
resulting values were subjected to one-way ANOVA followed by Tukey 
HSD post-hoc comparisons. 
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Fig. 1. Relative expression of CAV2.3 Parkinson’s disease and control brains. Immunolabelling of CAV2.3 in tyrosine hydroxylase-positive neurons of the VTA 
and SNpc of control (A,B) and PD patient (C,D) sections. Relative mean intensity of CAV2.3 signal in ventral dopaminergic neurons of control (CTL) and PD human 
brains (E). All values have been normalised against the mean for PD SNpc group. Scale bars: 25 µm. NS, not significant. **** for p < 0.0001 (one-way ANOVA). 
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