1,532 research outputs found

    Sizes of Voids as a test for Dark Matter Models

    Full text link
    We use the void probability statistics to study the redshift-space galaxy distribution as described by a volume-limited subsample of the Perseus-Pisces survey. We compare the results with the same analysis realized on artificial samples, extracted from high-resolution N-body simulations by reproducing the observational biases of the real data set. Simulations are run for the Cold+HotDM model (CHDM) and for unbiased and biased (b=1.5) CDM models in a 50 Mpc/h box. We identify galaxies as residing in peaks of the evolved density field. We fragment overmerged structures into individual galaxies so as to reproduce both the correct luminosity function (after assuming M/ L values for the resulting galaxy groups) and the two-point correlation function. Our main result is that a void-probability function (VPF) from the standard CHDM model with fractions 60% cold, 30% hot, 10% barions, exceeds the observational VPF with a high confidence level. CDM models produce smaller VPF independent of the biasing parameter. We verify the robustness of this result against changing the observer position in the simulations and the galaxy identification in the evolved density field.Comment: 15 pages, postscrip

    The BMW (Brera-Multiscale-Wavelet) Catalogue of Serendipitous X-ray Sources

    Full text link
    In collaboration with the Observatories of Palermo and Rome and the SAX-SDC we are constructing a multi-site interactive archive system featuring specific analysis tools. In this context we developed a detection algorithm based on the Wavelet Transform (WT) and performed a systematic analysis of all ROSAT-HRI public data (~3100 observations +1000 to come). The WT is specifically suitable to detect and characterize extended sources while properly detecting point sources in very crowded fields. Moreover, the good angular resolution of HRI images allows the source extension and position to be accurately determined. This effort has produced the BMW (Brera Multiscale Wavelet) catalogue, with more than 19,000 sources detected at the 4.2 sigma level. For each source detection we have information on the X-ray flux and extension, allowing for instance to select complete samples of extended X-ray sources such as candidate clusters of galaxies or SNR's. Here we present an overview of first results from several undergoing projects which make use of the BMW catalogue.Comment: 7 pages, 6 postscript files, 2 gif images, to appear in the proceedings of the conference "Mining the Sky", August 2000, Garching, German

    The BMW Deep X-ray Cluster Survey

    Full text link
    We briefly describe the main features of the Brera Multi-Wavelet (BMW) survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. Cluster candidates are selected from the general BMW catalogue of 20,000 sources based exclusively on their X-ray extension. Contrary to common wisdom, a clever selection of the HRI energy channels allows us to significantly reduce the background noise, thus greatly improving the ability to detect low surface-brightness sources as clusters. The resulting sample of ~250 candidates shows a very good sky coverage down to a flux \~3x10^-14 erg/s/cm^2 ([0.5-2.0] keV band), i.e comparable to existing PSPC-based deep survey, with a particularly interesting area of ~100 sq.deg. around fluxes ~10^-13 erg/s/cm^2, i.e. where highly-luminous, rare systems at z~0.6-1 can be detected. At the same time, the superior angular resolution of the instrument should avoid biases against intrinsically small systems, while easing the identification process (e.g. by spotting blends and AGN contaminants). While about 20% of the candidates are already identified with groups/clusters at z<0.3 on the DSS2 images, we have started a deep CCD imaging campaign to observe all sources associated to "blank fields". First results from these observations reveal a distant (z>0.5) bonafide cluster counterpart for ~80% of the targets.Comment: 3 pages, 2 figures; to appear in Proc. of the ESO/ECF/STSCI workshop on "Deep Fields", Garching Oct 2000, (Publ: Springer

    Augmenting photometric redshift estimates using spectroscopic nearest neighbours

    Full text link
    As a consequence of galaxy clustering, close galaxies observed on the plane of the sky should be spatially correlated with a probability that is inversely proportional to their angular separation. In principle, this information can be used to improve photometric redshift estimates when spectroscopic redshifts are available for some of the neighbouring objects. Depending on the depth of the survey, however, this angular correlation is reduced by chance projections. In this work, we implement a deep-learning model to distinguish between apparent and real angular neighbours by solving a classification task. We adopted a graph neural network architecture to tie together photometry, spectroscopy, and the spatial information between neighbouring galaxies. We trained and validated the algorithm on the data of the VIPERS galaxy survey, for which photometric redshifts based on spectral energy distribution are also available. The model yields a confidence level for a pair of galaxies to be real angular neighbours, enabling us to disentangle chance superpositions in a probabilistic way. When objects for which no physical companion can be identified are excluded, all photometric redshift quality metrics improve significantly, confirming that their estimates were of lower quality. For our typical test configuration, the algorithm identifies a subset containing ~75% high-quality photometric redshifts, for which the dispersion is reduced by as much as 50% (from 0.08 to 0.04), while the fraction of outliers reduces from 3% to 0.8%. Moreover, we show that the spectroscopic redshift of the angular neighbour with the highest detection probability provides an excellent estimate of the redshift of the target galaxy, comparable to or even better than the corresponding template-fitting estimate.Comment: 9 pages, 12 figures, matching the accepted version. NezNet is available at https://github.com/tos-1/NezNe

    Cluster Alignments in the Edinburgh/Milano Cluster Redshift Survey

    Full text link
    We present here the results of a statistical search for cluster alignments using the Edinburgh/Milano cluster redshift survey. This survey is a unique cluster database which has been objectively constructed to help minimise the systematic biases associated with previous optical cluster catalogues. We find some evidence for cluster alignments out to spatial separations of <10\mpc, however, it is not statistically significant. On larger scales, we find no evidence, statistically significant or not, for cluster alignments. These results are in most disagreement with the recent observations of West and Plionis; both of whom see significant cluster alignments out to \simeq30\mpc and beyond in the Abell \& Lick catalogues of clusters. Our findings are consistent with other searches for cluster alignments that do not involve these catalogues.Comment: postscript file of text (8pages), but not figures. Four figures available via anon ftp on oddjob.uchicago.edu (pub/align_fig*.ps), rest available from [email protected]. Paper accepted for publication in Monthly Notice

    Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types

    Get PDF
    We study the distortions induced by peculiar velocities on the redshift-space correlation function of galaxies of different morphological types in the Pisces-Perseus redshift survey. Redshift-space distortions affect early- and late-type galaxies in different ways. In particular, at small separations, the dominant effect comes from virialized cluster cores, where ellipticals are the dominant population. The net result is that a meaningful comparison of the clustering strength of different morphological types can be performed only in real space, i.e., after projecting out the redshift distortions on the two-point correlation function xi(r_p,pi). A power-law fit to the projected function w_p(r_p) on scales smaller than 10/h Mpc gives r_o = 8.35_{-0.76}^{+0.75} /h Mpc, \gamma = 2.05_{-0.08}^{+0.10} for the early-type population, and r_o = 5.55_{-0.45}^{+0.40} /h Mpc, \gamma = 1.73_{-0.08}^{+0.07} for spirals and irregulars. These values are derived for a sample luminosity brighter than M_{Zw} = -19.5. We detect a 25% increase of r_o with luminosity for all types combined, from M_{Zw} = -19 to -20. In the framework of a simple stable-clustering model for the mean streaming of pairs, we estimate sigma_12(1), the one-dimensional pairwise velocity dispersion between 0 and 1 /h Mpc, to be 865^{+250}_{-165} km/s for early-type galaxies and 345^{+95}_{-65} km/s for late types. This latter value should be a fair estimate of the pairwise dispersion for ``field'' galaxies; it is stable with respect to the presence or absence of clusters in the sample, and is consistent with the values found for non-cluster galaxies and IRAS galaxies at similar separations.Comment: 17 LaTeX pages including 3 tables, plus 11 PS figures. Uses AASTeX macro package (aaspp4.sty) and epsf.sty. To appear on ApJ, 489, Nov 199

    The X-ray Luminosity Function of Bright Clusters in the Local Universe

    Full text link
    We present the X-ray luminosity function (XLF) for clusters of galaxies derived from the RASS1 Bright Sample. The sample, selected from the ROSAT All-Sky Survey in a region of 2.5 sr within the southern Galactic cap, contains 130 clusters with flux limits in the range ~ 3-4 x 10^-12 ergs/cm^2/s in the 0.5-2.0 keV band. A maximum-likelihood fit with a Schechter function of the XLF over the entire range of luminosities (0.045 - 28. x 10^44 ergs/s), gives alpha = 1.52 +/- 0.11, L_* = 3.80 +0.70 -0.55 x 10^44 ergs/s, and A = 5.07 +/- 0.45 x 10^-7 Mpc^-3 (10^44 ergs/s)^(\alpha-1). We investigate possible evolutionary effects within the sample, out to our redshift limit (z ~ 0.3), finding no evidence for evolution. Our results are in good agreement with other local estimates of the XLF, implying that this statistic for the local universe is now well determined. Comparison with XLFs for distant clusters (0.3 < z < 0.6), shows that no evolution is present for L_X < 10^{44} ergs/s. However, we detect differences at the 3 sigma level, between our local XLF and the distant one estimated by Henry et al. for the EMSS sample. This difference is still present when considering the EMSS sample revised by Nichol et al.Comment: 13 pages with 3 figures included, LaTex, aaspp4.sty and epsf.sty, accepted for publication in ApJ Letters, only minor changes, added reference
    • …
    corecore