45 research outputs found

    Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity

    Get PDF
    High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77\ue2 kg/m 2), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISI OGTT) and disposition index (DI OGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than-resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISI OGTT and final body weight (adjusted R2 = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity

    Altered glucose metabolism rather than naive type 2 diabetes mellitus (T2DM) is related to vitamin D status in severe obesity

    Get PDF
    Context: The last decades have provided insights into vitamin D physiology linked to glucose homeostasis. Uncertainties remain in obesity due to its intrinsic effects on vitamin D and glucose tolerance.Objectives: To assess the relationship between vitamin D and glucose abnormalities in severely obese individuals previously unknown to suffer from abnormal glucose metabolism.Setting: Tertiary care centre.Patients: 524 obese patients (50.3 \ub1 14.9 yrs; BMI, 47.7 \ub1 7.3 kg/m2) screened by OGTT, HbA1c and the lipid profile. Vitamin D status was assessed by 25(OH)D3, PTH and electrolyte levels. 25(OH)D3 deficiency/insufficiency were set at 20 and 30 ng/ml, respectively. All comparative and regression analyses were controlled for age, BMI and gender.Results: The prevalence of vitamin D deficiency/insufficiency and secondary hyperparathyroidism were 95% and 50.8%, respectively. Normal glucose tolerance (NGT), impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) were found in 37.8%, 40.5% and 21.7% of cases, respectively. Large variations in metabolic parameters were seen across categories of vitamin D status, but the only significant differences were found for C-peptide, tryglicerides, LDL- and HDL-cholesterol levels (p < 0.05 for all). The prevalence of vitamin D deficiency was documented to be slightly but significantly more frequent in glucose-intolerant patients (IFG + IGT + T2DM) compared to the -normotolerant counterpart (87% vs. 80%, p < 0.05). In partial correlation analyses, there was no association between vitamin D levels and glucose-related markers but for HbA1c (r = -0.091, p < 0.05), and both basal and OGTT-stimulated insulin levels (r = 0.097 and r = 0.099; p < 0.05 for all). Vitamin D levels were also correlated to HDL-cholesterol (r = 0.13, p = 0.002). Multivariate regression analysis inclusive of vitamin D, age, BMI, gender and fat mass as independent variables, showed that vitamin D was capable of predicting HbA1c levels (\u3b2 = -0.101, p < 0.05).Conclusions: Given the inherent effect of obesity on vitamin D and glucose homeostasis, current data suggest a potential independent role for vitamin D in the regulation of glucose metabolism in a setting of obese patients previously unknown to harbour glucose metabolism abnormalities

    The impact of the metabolic phenotype on thyroid function in obesity

    Get PDF
    Background: Obesity is known to promote mild hyperthyrotropinaemia by unknown metabolic mechanisms. This investigation aimed to explore the association between thyroid function and metabolic phenotype in euthyroid obese individuals. Retrospective, cross-sectional study. Tertiary care center. Methods: 952 euthyroid obese individuals referred to our Institution for obesity. Serum levels of TSH, FT4, glucose, insulin and HbA1c levels, lipid profile, liver function and proinflammatory indices were measured. Resting energy expenditure was assessed by indirect calorimetry and body composition by bioimpedance analysis. Results: On admission, 306 patients had previously diagnosed diabetes mellitus on treatment with metformin, while 113 patients were diagnosed with incident diabetes mellitus. Serum TSH levels were similar between metformin-treated diabetic subjects and metformin-untreated subjects, while FT4 was slightly but significantly higher in the former. Analysis stratified by TSH categories found no effect of metformin-treated diabetes mellitus on TSH levels. Interestingly, obese patients with incident diabetes showed lower TSH levels than normoglycaemic ones. In correlation studies on the whole dataset, an association related TSH to BMI and total cholesterol levels, which was lost upon adjustment for individual confounders. FT4 levels were found to be inversely related to BMI, insulin resistance and triglycerides, while being directly associated with HDL-cholesterol levels. These correlations remained unaltered after controlling for individual confounders. In multivariate linear regression analysis, TSH was associated with FT4, total cholesterol and BMI values. Significant predictors of FT4 were constituted by previously diagnosed diabetes mellitus, BMI, TSH and age. Conclusions: In euthyroid obese subjects, FT4 seems more closely related than TSH levels to parameters of cardiometabolic risk. TSH levels did not differ between metformin-treated and untreated subjects, while they were lower in patients with incident diabetes mellitus compared to normoglycaemic ones

    Insulin resistance in adolescents with Down syndrome: a cross-sectional study

    Get PDF
    BACKGROUND: The prevalence of diabetes mellitus is higher in individuals with Down syndrome (DS) than in the general population; it may be due to the high prevalence of obesity presented by many of them. The aim of this study was to evaluate the insulin resistance (IR) using the HOMA (Homeostasis Model Assessment) method, in DS adolescents, describing it according to the sex, body mass index (BMI) and pubertal development. METHODS: 15 adolescents with DS (8 males and 7 females) were studied, aged 10 to 18 years, without history of disease or use of medication that could change the suggested laboratory evaluation. On physical examination, the pubertal signs, acanthosis nigricans (AN), weight and height were evaluated. Fasting plasma glucose and insulin were analysed by the colorimetric method and RIA-kit LINCO, respectively. IR was calculated using the HOMA method. The patients were grouped into obese, overweight and normal, according to their BMI percentiles. The EPIINFO 2004 software was used to calculate the BMI, its percentile and Z score. RESULTS: Five patients were adults (Tanner V or presence of menarche), 9 pubertal (Tanner II – IV) and 1 prepubertal (Tanner I). No one had AN. Two were obese, 4 overweight and 9 normal. Considering the total number of patients, HOMA was 1.7 ± 1.0, insulin 9.3 ± 4.8 μU/ml and glucose 74.4 ± 14.8 mg/dl. The HOMA values were 2.0 ± 1.0 in females and 1.5 ± 1.0 in males. Considering the nutritional classification, the values of HOMA and insulin were: HOMA: 3.3 ± 0.6, 2.0 ± 1.1 and 1.3 ± 0.6, and insulin: 18.15 ± 1.6 μU/ml, 10.3 ± 3.5 μU/ml and 6.8 ± 2.8 μU/ml, in the obese, overweight and normal groups respectively. Considering puberty, the values of HOMA and insulin were: HOMA: 2.5 ± 1.3, 1.4 ± 0.6 and 0.8 ± 0.0, and insulin: 13.0 ± 5.8 μU/ml, 7.8 ± 2.9 μU/ml and 4.0 ± 0.0 μU/ml, in the adult, pubertal and prepubertal groups respectively. CONCLUSION: The obese and overweight, female and adult patients showed the highest values of HOMA and insulin
    corecore