30 research outputs found

    Delayed conduction and its implications in murine Scn5a+/− hearts: independent and interacting effects of genotype, age, and sex

    Get PDF
    We explored for relationships between SCN5A haploinsufficiency, implicated in clinical arrhythmogenicity, and right ventricular (RV) conduction disorders in Langendorff-perfused, male and female, and young (3 months) and old (>12 month old) Scn5a+/− and wild type (WT) hearts. The investigated conditions of genotype, age, and sex affected latencies but not repolarization time courses of RV monophasic action potentials. This prompted examination of the patterns of RV epicardial activation, its dispersion, and their interrelationships as possible arrhythmic mechanisms using a 64-channel, multi-electrode array. Mean ventricular activation times (T*MEAN), spatial dispersions (D*S) between recording channels/cardiac cycle, and maximum activation times (T*MAX) representing the slowest possible conduction in any given heart were all higher in old male Scn5a+/− compared with young male and old female Scn5a+/− and old male WT. Temporal dispersions (D*T) of recording channels were similarly higher in old male Scn5a+/− compared with old male WT. All groupings of D*T, D*S, and T*MAX nevertheless linearly correlated with T*MEAN, with indistinguishable slopes. The variates explored thus influence D*T, D*S, and T*MAX through actions on T*MEAN. These findings in turn correlated with increased levels of fibrosis in young male, young female, and old male Scn5a+/− compared with the corresponding WTs. We thus demonstrate for the first time independent and interacting effects of genotype, age, and sex on epicardial conduction and its dispersions at least partially attributable to fibrotic change, resulting in the greatest effects in old male Scn5a+/− in an absence of alterations in repolarization time courses. This directly implicates altered depolarization in the clinical arrhythmogenicity associated with Scn5a+/−

    Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts.

    Get PDF
    AIM: To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav 1.5 insufficiency and fibrotic change. METHODS: Arrhythmic properties of Langendorff-perfused Scn5a+/- and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav 1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. RESULTS: Scn5a+/- hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/- genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/- hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/- genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav 1.5 expression were attributable to Scn5a+/-, whereas increased levels of fibrosis were associated with the RVOT. CONCLUSIONS: The Scn5a+/- RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav 1.5 expression and increased CD attributable to fibrosis

    Reduced Na+ and higher K+ channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/− mice

    Get PDF
    Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/− murine model. Nav1.5 mRNA and protein expression were lower in Scn5a+/− than wild-type (WT), with a further reduction in the RV compared with the left ventricle (LV). RVs showed higher expression levels of Kv4.2, Kv4.3 and KChIP2 in both Scn5a+/− and WT. Action potential upstroke velocity and maximum Na+ current (INa) density were correspondingly decreased in Scn5a+/−, with a further reduction in the RV. The voltage dependence of inactivation was shifted to more negative values in Scn5a+/−. These findings are predictive of a localized depolarization abnormality leading to slowed conduction. Persistent Na+ current (IpNa) density was decreased in a similar pattern to INa. RV transient outward current (Ito) density was greater than LV in both WT and Scn5a+/−, and had larger time constants of inactivation. These findings were also consistent with the observation that AP durations were smallest in the RV of Scn5a+/−, fulfilling predictions of an increased heterogeneity of repolarization as an additional possible electrophysiological mechanism for arrhythmogenesis in BrS

    The RyR2-P2328S mutation downregulates Nav1.5 producing arrhythmic substrate in murine ventricles.

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.This work was supported by Royal Society / National Science Foundation of China International Joint Project Grant (JP100994/ No.81211130599) (JAF and AM), Issac Newton Trust/ Wellcome Trust ISSF/ University of Cambridge Joint Research Grants Scheme (JAF) and by the Wellcome Trust and Medical Research Council (CLH).This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s00424-015-1750-
    corecore