8 research outputs found

    Optical Genome Mapping in Routine Cytogenetic Diagnosis of Acute Leukemia

    No full text
    Cytogenetic aberrations are found in 65% of adults and 75% of children with acute leukemia. Specific aberrations are used as markers for the prognostic stratification of patients. The current standard cytogenetic procedure for acute leukemias is karyotyping in combination with FISH and RT-PCR. Optical genome mapping (OGM) is a new technology providing a precise identification of chromosomal abnormalities in a single approach. In our prospective study, the results obtained using OGM and standard techniques were compared in 29 cases of acute myeloid (AML) or lymphoblastic leukemia (ALL). OGM detected 73% (53/73) of abnormalities identified by standard methods. In AML cases, two single clones and three subclones were missed by OGM, but the assignment of patients to cytogenetic risk groups was concordant in all patients. OGM identified additional abnormalities in six cases, including one cryptic structural variant of clinical interest and two subclones. In B-ALL cases, OGM correctly detected all relevant aberrations and revealed additional potentially targetable alterations. In T-ALL cases, OGM characterized a complex karyotype in one case and identified additional abnormalities in two others. In conclusion, OGM is an attractive alternative to current multiple cytogenetic testing in acute leukemia that simplifies the procedure and reduces costs

    Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer

    No full text
    International audienceHereditary predisposition to cancer affects about 3–5% of renal cancers. Testing criteria have been proposed in France for genetic testing of non-syndromic renal cancer. Our study explores the detection rates associated with our testing criteria. Using a comprehensive gene panel including 8 genes related to renal cancer and 50 genes related to hereditary predisposition to other cancers, we evaluated the detection rate of pathogenic variants in a cohort of 83 patients with suspected renal cancer predisposition. The detection rate was 7.2% for the renal cancer genes, which was 2.41-fold higher than the estimated 3% proportion of unselected kidney cases with inherited risk. Pathogenic variants in renal cancer genes were observed in 44.5% of syndromic cases, and in 2.7% of non-syndromic cases. Incidental findings were observed in CHEK2, MSH2, MUTYH and WRN. CHEK2 was associated with renal cancer (OR at 7.14; 95% CI 1.74–29.6; p < 0.003) in our study in comparison to the gnomAD control population. The detection rate in renal cancer genes was low in non-syndromic cases. Additional causal mechanisms are probably involved, and further research is required to find them. A study of the management of renal cancer risk for CHEK2 pathogenic variant carriers is needed

    Relevance of Extending FGFR3 Gene Analysis in Osteochondrodysplasia to Non-Coding Sequences: A Case Report

    No full text
    Skeletal dysplasia, also called osteochondrodysplasia, is a category of disorders affecting bone development and children’s growth. Up to 552 genes, including fibroblast growth factor receptor 3 (FGFR3), have been implicated by pathogenic variations in its genesis. Frequently identified causal mutations in osteochondrodysplasia arise in the coding sequences of the FGFR3 gene: c.1138G>A and c.1138G>C in achondroplasia and c.1620C>A and c.1620C>G in hypochondroplasia. However, in some cases, the diagnostic investigations undertaken thus far have failed to identify the causal anomaly, which strengthens the relevance of the diagnostic strategies being further refined. We observed a Caucasian adult with clinical and radiographic features of achondroplasia, with no common pathogenic variant. Exome sequencing detected an FGFR3(NM_000142.4):c.1075+95C>G heterozygous intronic variation. In vitro studies showed that this variant results in the aberrant exonization of a 90-nucleotide 5â€Č segment of intron 8, resulting in the substitution of the alanine (Ala359) for a glycine (Gly) and the in-frame insertion of 30 amino acids. This change may alter FGFR3’s function. Our report provides the first clinical description of an adult carrying this variant, which completes the phenotype description previously provided in children and confirms the recurrence, the autosomal-dominant pathogenicity, and the diagnostic relevance of this FGFR3 intronic variant. We support its inclusion in routinely used diagnostic tests for osteochondrodysplasia. This may increase the detection rate of causal variants and therefore could have a positive impact on patient management. Finally, FGFR3 alteration via non-coding sequence exonization should be considered a recurrent disease mechanism to be taken into account for new drug design and clinical trial strategies

    Case Series of 11 <i>CDH1</i> Families (47 Carriers) Including Incidental Findings, Signet Ring Cell Colon Cancer and Review of the Literature

    No full text
    Germline pathogenic variants in E-cadherin (CDH1) confer high risk of developing lobular breast cancer and diffuse gastric cancer (DGC). The cumulative risk of DGC in CDH1 carriers has been recently reassessed (from 40–83% by age 80 to 25–42%) and varies according to the presence and number of gastric cancers in the family. As there is no accurate estimate of the risk of gastric cancer in families without DGC, the International Gastric Cancer Linkage Consortium recommendation is not straightforward: prophylactic gastrectomy or endoscopic surveillance should be proposed for these families. The inclusion of CDH1 in constitutional gene panels for hereditary breast and ovarian cancer and for gastrointestinal cancers, recommended by the French Genetic and Cancer Consortium in 2018 and 2020, leads to the identification of families with lobular cancer without DGC but also to incidental findings of pathogenic variants. Management of CDH1 carriers in case of incidental findings is complex and causes dilemmas for both patients and providers. We report eleven families (47 CDH1 carriers) from our oncogenetic department specialized in breast and ovarian cancer, including four incidental findings. We confirmed that six families did not have diffuse gastric cancer in their medical records. We discuss the management of the risk of diffuse gastric cancer in Hereditary Lobular Breast Cancer (HLBC) through a family of 11 CDH1 carriers where foci were identified in endoscopic surveillance. We also report a new colon signet ring cancer case in a CDH1 carrier, a rare aggressive cancer included in CDH1-related malignancies

    Feasibility of Optical Genome Mapping from Placental and Umbilical Cord Sampled after Spontaneous or Therapeutic Pregnancy Termination

    No full text
    Optical genome mapping (OGM) is an alternative to classical cytogenetic techniques to improve the detection rate of clinically significant genomic abnormalities. The isolation of high-molecular-weight (HMW) DNA is critical for a successful OGM analysis. HMW DNA quality depends on tissue type, sample size, and storage conditions. We assessed the feasibility of OGM analysis of DNA from nine umbilical cord (UC) and six chorionic villus (CV) samples collected after the spontaneous or therapeutic termination of pregnancy. We analyzed quality control metrics provided by the Saphyr system (Bionano Genomics) and assessed the length of extracted DNA molecules using pulsed-field capillary electrophoresis. OMG data were successfully analyzed for all six CV samples. Five of the UC samples did not meet the Saphyr quality criteria, mainly due to poor DNA quality. In this regard, we found that DNA quality assessment with pulsed-field capillary electrophoresis can predict a successful OGM analysis. OGM data were fully concordant with the results of standard cytogenetic methods. Moreover, OGM detected an average of 14 additional structural variants involving OMIM genes per sample. On the basis of our results, we established the optimal conditions for sample storage and preparation required for a successful OGM analysis. We recommend checking DNA quality before analysis with pulsed-field capillary electrophoresis if the storage conditions were not ideal or if the quality of the sample is poor. OGM can therefore be performed on fetal tissue harvested after the termination of pregnancy, which opens up the perspective for improved diagnostic yield

    Diagnosis of PTEN mosaicism: the relevance of additional tumor DNA sequencing. A case report and review of the literature

    No full text
    Abstract Background PTEN hamartoma syndrome (PHTS) is an autosomal dominant disorder characterized by pathogenic variants in the tumor suppressor gene phosphatase and tensin homolog ( PTEN ). It is associated with an increased risk of muco-cutaneous features, hamartomatous tumors, and cancers. Mosaicism has been found in a few cases of patients with de novo PHTS, identified from blood samples. We report a PHTS patient with no variant identified from blood sample. Constitutional PTEN mosaicism was detected through sequencing of DNA from different tumoral and non-tumoral samples. Case presentation Our patient presented clinical Cowden syndrome at 56 years of age, with three major criteria (macrocephaly, Lhermitte Duclos disease, oral papillomatosis), and two minor criteria (structural thyroid lesions, esophageal glycogenic acanthosis). Deep sequencing of PTEN of blood leukocytes did not reveal any pathogenic variants. Exploration of tumoral (colonic ganglioneuroma, esophageal papilloma, diapneusia fibroids) and non-tumoral stomach tissues found the same PTEN pathogenic variant (NM_000314.4 c.389G > A; p.(Arg130Gln)), with an allelic frequency of 12 to 59%, confirming genomic mosaicism for Cowden syndrome. Conclusions This case report, and review of the literature, suggests that systematic tumor analysis is essential for patients presenting PTEN hamartoma syndrome in the absence of any causal variant identified in blood leukocytes, despite deep sequencing. In 65 to 70% of cases of clinical Cowden syndrome, no pathogenic variant in the PTEN is observed in blood samples: mosaicism may explain a significant number of these patients. Tumor analysis would improve our knowledge of the frequency of de novo variations in this syndrome. Finally, patients with mosaicism for PTEN may not have a mild phenotype; medical care identical to that of heterozygous carriers should be offered
    corecore