50 research outputs found

    Hardness-Intensity Correlations in Magnetar Afterglows

    Get PDF
    We explore the hardness-intensity correlations observed in several AXPs and SGRs within the framework of a thermally emitting magnetar model. Using our detailed atmosphere models and taking into account reprocessing of the surface emission by the magnetosphere, we show that the hardness of the surface spectra increases with increasing temperature and hence the changes in the effective temperatures of the outer layers of the star alone can account for the observed correlations. We conclude that the slow release of the heat deposited in the deep crust during a magnetar burst naturally accounts for the spectral changes during the afterglow. The correlations are further enhanced by changes in the structures of the magnetic currents during or following a burst. However, the additional hardening produced by scattering of the surface photons off the magnetospheric charges saturates at moderate values of the scattering optical depth.Comment: Submitted to the Astrophysical Journal Letter

    The mass and the radius of the neutron star in the transient low mass X-ray binary SAX J1748.9−2021

    Get PDF
    We use time resolved spectroscopy of thermonuclear X-ray bursts observed from SAX J1748.9−2021 to infer the mass and the radius of the neutron star in the binary. Four X-ray bursts observed from the source with RXTE enable us to measure the angular size and the Eddington limit on the neutron star surface. Combined with a distance measurement to the globular cluster NGC 6440, in which SAX J1748.9−2021 resides, we obtain two solutions for the neutron star radius and mass, R = 8.18±1.62 km and M = 1.78±0.3 M_sun or R = 10.93±2.09 km and M = 1.33 ± 0.33 M_sun

    The Mass and Radius of the Neutron Star in the Bulge Low-Mass X-ray Binary KS 1731-260

    Full text link
    Measurements of neutron star masses and radii are instrumental for determining the equation of state of their interiors, understanding the dividing line between neutron stars and black holes, and for obtaining accurate statistics of source populations in the Galaxy. We report here on the measurement of the mass and radius of the neutron star in the low-mass X-ray binary KS 1731-260. The analysis of the spectroscopic data on multiple thermonuclear bursts yields well-constrained values for the apparent angular area and the Eddington flux of the source, both of which depend in a distinct way on the mass and radius of the neutron star. The binary KS 1731-260 is in the direction of the Galactic bulge, allowing a distance estimate based on the density of stars in that direction. Making use of the Han & Gould model, we determine the probability distribution over the distance to the source, which is peaked at 8 kpc. Combining these measurements, we place a strong upper bound on the radius of the neutron star, R <= 12 km, while confining its mass to M <= 1.8 M_sun.Comment: submitted to Ap

    Astrophysical Measurement of the Equation of State of Neutron Star Matter

    Full text link
    We present the first astrophysical measurement of the pressure of cold matter above nuclear saturation density, based on recently determined masses and radii of three neutron stars. The pressure at higher densities are below the predictions of equations of state that account only for nucleonic degrees of freedom, and thus present a challenge to the microscopic theory of neutron star matter.Comment: replaced with the published versio

    Mapping the Surface of the Magnetar 1E 1048.1-5937 in Outburst and Quiescence Through Phase Resolved X-ray Spectroscopy

    Full text link
    We model the pulse profiles and the phase resolved spectra of the anomalous X-ray pulsar 1E 1048.1-5937 obtained with XMM-Newton to map its surface temperature distribution during an active and a quiescent epoch. We develop and apply a model that takes into account the relevant physical and geometrical effects on the neutron star surface, magnetosphere, and spacetime. Using this model, we determine the observables at infinity as a function of pulse phase for different numbers and sizes of hot spots on the surface. We show that the pulse profiles extracted from both observations can be modeled with a single hot spot and an antipodal cool component. The size of the hot spot changes from 80\approx 80^{\circ} in 2007, 3 months after the onset of a dramatic flux increase, to 30\approx 30^{\circ} during the quiescent observation in 2011, when the pulsed fraction returned to the pre-outburst \approx 65\% level. For the 2007 observation, we also find that a model consisting of a single 0.4 keV hot spot with a magnetic field strength of 1.8×10141.8 \times 10^{14} G accounts for the spectra obtained at three different pulse phases but under predicts the flux at the pulse minimum, where the contribution to the emission from the cooler component is non-negligible. The inferred temperature of the spot stays approximately constant between different pulse phases, in agreement with a uniform temperature, single hot spot model. These results suggest that the emitting area grows significantly during outbursts but returns to its persistent and significantly smaller size within a few year timescale.Comment: Accepted for publication in The Astrophysical Journa

    Probing X-ray Absorption and Optical Extinction in the Interstellar Medium Using Chandra Observations of Supernova Remnants

    Full text link
    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit supernova remnant spectra, (ii) the spatial variations within individual remnants, (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions, and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation NH = (2.87+/-0.12) x 10^21 AV cm^(-2), which is significantly higher than the previous measurements

    X-ray Perspective of the Twisted Magnetospheres of Magnetars

    Full text link
    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional (3D) twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength BB, magnetospheric twist angle Δϕ\Delta\phi, and the normalized electron velocity β\beta. We also create a tabular model (STEMS3D) and apply it to a large sample of XMM-Newton spectra of magnetars. The model successfully fits nearly all spectra, and the obtained magnetic field for 7 out of the 11 sources are consistent with the values inferred from the spin-down rates. We conclude that the continuum-fitting by our model is a robust method to measure the magnetic field strength and magnetospheric configuration of AXPs and SGRs. Investigating the multiple observations of variable sources, we also study the mechanism of their spectral evolution. Our results suggest that the magnetospheres in these sources are highly twisted (Δϕ>1\Delta\phi > 1), and the behavior of magnetospheric twisting and untwisting is revealed in the 2002 outburst of 1E 2259+586.Comment: 20 pages, 12 figures, 9 tables, published in Ap
    corecore