9 research outputs found
Fractionated photothermal antitumor therapy with multidye nanoparticles
Luke G Gutwein1, Amit K Singh2, Megan A Hahn2, Michael C Rule3, Jacquelyn A Knapik4, Brij M Moudgil2, Scott C Brown2, Stephen R Grobmyer11Division of Surgical Oncology, Department of Surgery, College of Medicine, 2Particle Engineering Research Center, 3Cell and Tissue Analysis Core, McKnight Brain Institute, 4Department of Pathology, University of Florida, Gainesville, FL, USAPurpose: Photothermal therapy is an emerging cancer treatment paradigm which involves highly localized heating and killing of tumor cells, due to the presence of nanomaterials that can strongly absorb near-infrared (NIR) light. In addition to having deep penetration depths in tissue, NIR light is innocuous to normal cells. Little is known currently about the fate of nanomaterials post photothermal ablation and the implications thereof. The purpose of this investigation was to define the intratumoral fate of nanoparticles (NPs) after photothermal therapy in vivo and characterize the use of novel multidye theranostic NPs (MDT-NPs) for fractionated photothermal antitumor therapy.Methods: The photothermal and fluorescent properties of MDT-NPs were first characterized. To investigate the fate of nanomaterials following photothermal ablation in vivo, novel MDT-NPs and a murine mammary tumor model were used. Intratumoral injection of MDT-NPs and real-time fluorescence imaging before and after fractionated photothermal therapy was performed to study the intratumoral fate of MDT-NPs. Gross tumor and histological changes were made comparing MDT-NP treated and control tumor-bearing mice.Results: The dual dye-loaded mesoporous NPs (ie, MDT-NPs; circa 100 nm) retained both their NIR absorbing and NIR fluorescent capabilities after photoactivation. In vivo MDT-NPs remained localized in the intratumoral position after photothermal ablation. With fractionated photothermal therapy, there was significant treatment effect observed macroscopically (P = 0.026) in experimental tumor-bearing mice compared to control treated tumor-bearing mice.Conclusion: Fractionated photothermal therapy for cancer represents a new therapeutic paradigm enabled by the application of novel functional nanomaterials. MDT-NPs may advance clinical treatment of cancer by enabling fractionated real-time image guided photothermal therapy.Keywords: fluorescence, mesoporous silica, biodistribution, photothermal ablation, live animal imaging, near-infrared nanoparticle, breast cance
Caspase-3-dependent export of TCTP: a novel pathway for antiapoptotic intercellular communication
The apoptotic program incorporates a paracrine component of importance in fostering tissue repair at sites of apoptotic cell deletion. As this paracrine pathway likely bears special importance in maladaptive intercellular communication leading to vascular remodeling, we aimed at further defining the mediators produced by apoptotic endothelial cells (EC), using comparative and functional proteomics. Apoptotic EC were found to release nanovesicles displaying ultrastructural characteristics, protein markers and functional activity that differed from apoptotic blebs. Tumor susceptibility gene 101 and translationally controlled tumor protein (TCTP) were identified in nanovesicle fractions purified from medium conditioned by apoptotic EC and absent from purified apoptotic blebs. Immunogold labeling identified TCTP on the surface of nanovesicles purified from medium conditioned by apoptotic EC and within multivesicular blebs in apoptotic EC. These nanovesicles induced an extracellular signal-regulated kinases 1/2 (ERK 1/2)-dependent antiapoptotic phenotype in vascular smooth muscle cells (VSMC), whereas apoptotic blebs did not display antiapoptotic activity on VSMC. Caspase-3 biochemical inhibition and caspase-3 RNA interference in EC submitted to a proapoptotic stimulus inhibited the release of nanovesicles. Also, TCTP siRNAs in EC attenuated the antiapoptotic activity of purified nanovesicles on VSMC. Collectively, these results identify TCTP-bearing nanovesicles as a novel component of the paracrine apoptotic program of potential importance in vascular repair
The glycocalyx-linking albuminuria with renal and cardiovascular disease
Albuminuria is commonly used as a marker of kidney disease progression, but some evidence suggests that albuminuria also contributes to disease progression by inducing renal injury in specific disease conditions. Studies have confirmed that in patients with cardiovascular risk factors, such as diabetes and hypertension, endothelial damage drives progression of kidney disease and cardiovascular disease. A key mechanism that contributes to this process is the loss of the glycocalyx-a polysaccharide gel that lines the luminal endothelial surface and that normally acts as a barrier against albumin filtration. Degradation of the glycocalyx in response to endothelial activation can lead to albuminuria and subsequent renal and vascular inflammation, thus providing a pathophysiological framework for the clinical association of albuminuria with renal and cardiovascular disease progression. In this Review, we examine the likely mechanisms by which glycocalyx dysfunction contributes to kidney injury and explains the link between cardiovascular disease and albuminuria. Evidence suggests that glycocalyx dysfunction is reversible, suggesting that these mechanisms could be considered as therapeutic targets to prevent the progression of renal and cardiovascular disease. This possibility enables the use of existing drugs in new ways, provides an opportunity to develop novel therapies, and indicates that albuminuria should be reconsidered as an end point in clinical trials
The Contribution of Ig-Superfamily and MARVEL D Tight Junction Proteins to Cancer Pathobiology
The epithelial linings of eukaryotic organs form dynamically-regulated selectively-permeable barriers that control the movement of substances into (and out of) mucosal tissues. The principal structural determinants of epithelial barrier function are intercellular tight junctions (TJs), multi-protein complexes composed of claudin and non-claudin transmembrane proteins in addition to cytosolic linker proteins. As well as their crucial roles in barrier function, it is now well recognized that TJ proteins coordinate a variety of signaling and trafficking functions regulating physiological events such as cell differentiation, proliferation, migration and polarity. Accordingly, dysregulations in TJ protein expression or function are increasingly being linked to several pathophysiologies including cancer. To date, claudins have received the most attention as putative contributors to cancer initiation or progression. However the contribution of non-claudin transmembrane TJ proteins (including select immunoglobulin superfamily members, nectins, occludin and Marvel D family members) to the pathophysiology of cancer remains incompletely understood. Therefore the focus of this review is to collate recently-published evidence that supports or discounts a role for non-claudin transmembrane TJ proteins in cancer, and to speculate upon the feasibility of these molecules as prognostic biomarkers or therapeutic targets in cancer.</p