28 research outputs found

    Redox Regulation of Cysteine-Dependent Enzymes in Neurodegeneration

    Get PDF
    Evidence of increased oxidative stress has been found in various neurodegenerative diseases and conditions. While it is unclear whether oxidative stress is a cause or effect, protein, lipid, and DNA have all been found to be susceptible to oxidant-induced modifications that alter their function. Results of clinical trials based on the oxidative-stress theory have been mixed, though data continues to indicate that prevention of high levels of oxidative stress is beneficial for health and increases longevity. Due to the highly reactive nature of the sulfhydryl group, the focus of this paper is on the impact of oxidative stress on cysteine-dependent enzymes and how oxidative stress may contribute to neurological dysfunction through this selected group of proteins

    Young adult perspectives on the selection of pharmaceuticals for mental health treatment

    Get PDF
    Shared decision making places an emphasis on patient understanding and engagement. However, when it comes to treatment selection, research tends to focus on how doctors select pharmaceutical treatments. The current study is a qualitative assessment of how patients choose among three common treatments that have varying degrees of scientific support and side effects. We used qualitative data from 157 undergraduates (44 males, 113 females; mean age = 21.89 years) that was collected as part of a larger correlational study of depression and critical thinking skills. Qualitative analysis revealed three major themes: shared versus independent decision making, confidence in the research and the drug, and cost and availability. Some participants preferred to rely on informal networks such as consumer testimonials while others expressed a false sense of security for over-the-counter treatments because they believe the drugs are regulated. Many indicated that they avoid seeking mental health services because of the time and money needed. The results indicate several factors influence selection of common depression treatments. Young adults indicate that when reading prescription information, they most often rely on perceptions including ease of access, price, and beliefs about drug regulations. General guidelines for treatment descriptions were created based on the qualitative analysis

    Redox regulation of cysteine-dependent enzymes

    No full text
    It is well-established that maintenance of the intracellular redox (i.e., reduction-oxidation) state is critical for cell survival and that prolonged or abnormal perturbations toward oxidation result in cell dysfunction. This is exemplified by the widespread observation of oxidative stress in many pathological conditions, as well as the positive effects of antioxidants in treating certain conditions or extending the life span itself. In addition to the effects of oxidation on the lipid bilayer and modification of DNA in the nucleus, proteins are also modulated by the redox state. One of the primary targets of oxidation within a protein is the AA cysteine, whose thiol side chain is highly sensitive to all types of oxidizing agents. Although this sensitivity is used to prevent oxidation within the cell by potent defense mechanisms, such as glutathione, the use of cysteine in the active site of enzymes leaves them open to oxidant-mediated damage. Whether the damage is due to a pathological condition or to postmortem mediated loss of redox homeostasis, cysteine-dependent enzymes are targets of all forms of reactive oxygen, nitrogen, and sulfur species. A greater understanding of the redox-mediated control of cysteine-dependent enzymes opens the door to the selective use of antioxidants to prevent or reverse the cellular damage their inhibition causes.Journal Articl

    Thiol-protease oxidation in age-related neuropathology

    No full text
    Increased oxidative stress is a hallmark of every major neurodegenerative disease that has been studied. Numerous biomarkers of oxidative stress have been found, indicating that waves of oxidation had, at one time or another, overwhelmed antioxidant defenses, leaving behind a host of oxidized DNA, lipids, and proteins in their path. Although some level of oxidation may be beneficial, perhaps mediated by a hormetic response, the extent and types of oxidation detected in neuropathological states would suggest that oxidative stress contributes to a loss of homeostasis and cellular dysfunction. Although there are many targets of oxidants, this review emphasizes protein oxidation with a focus on an important group of redox-sensitive enzymes, the thiol-proteases. Both the direct and the indirect effects of oxidation and their potential importance in neurodegeneration are considered.Journal ArticleFinal article publishe

    NMDA receptor pharmacology: Perspectives from molecular biology

    No full text
    The NMDA receptor is an important target for drug development, with agents from many different classes acting on this receptor. While the severe side effects associated with complete NMDA receptor blockade have limited clinical usefulness of most antagonists, the understanding of the multiple forms of NMDA receptors provides an opportunity for development of subtype specific agents with potentially fewer side effects. Different NMDA receptor subtypes are assembled from combinations of NR1 and NR2 subunits with each subunit conveying distinct properties. The NRI subunit is the glycine binding subunit and exists as 8 splice variants of a single gene. The glutamate binding subunit is the NR2 subunit, which is generated as the product of four distinct genes, and provides most of the structural basis for heterogeneity in NMDA receptors. Pharmacological heterogeneity results from differences in the structure of ligand binding regions, as well as structural differences between subtypes in a modulatory region called the LIVBP-like domain. This region in NR1 and NR2B controls the action of NR2B-selective drugs like ifenprodil, while this domain in receptors containing the NR2A subunit controls the action of NR2A-selective drugs such as zinc. This suggests that NMDA receptor subtype selective drugs can be created, and further understanding of subtype specific mechanisms ultimately may allow successful use of NMDA receptor antagonists as therapeutic agents.Journal Articl

    Measurement of calpain activity in vitro and in situ using a fluorescent compound and tau as substrates

    No full text
    Calpains play important roles in numerous physiological and pathological processes (1,2) by catalyzing the limited proteolysis of a wide variety of protein substrates. The activity of calpain toward a specific substrate is regulated not only by calcium, but also by numerous other factors including calpain activator proteins (3), redox state (4,5), and the phosphorylation state of the substrate (6, 7, 8). In order to determine the relative contributions of these and other factors to the activity of calpain, it is necessary to be able to measure calpain activity both in vitro and in situ, and these assays are the subject of this chapter.Book Chapte

    A spatial study of bladder cancer mortality and incidence in the contiguous US: 2000-2014

    No full text
    Bladder cancer is a significant health issue across the United States of America (USA). Evidence of unequal distribution of a disease or condition's incidence and mortality would suggest that important geographically-defined variables may play a role. In this study, a spatial cluster analysis of bladder cancer mortality identified significant hot spots in some parts of the USA. Regression analysis modelling estimated the effects of selected covariates or risk factors for bladder cancer mortality and also incidence. Spatial heat maps and cluster identification were done for mortality and incidence. The main result was the significant association between bladder cancer mortal-ity and arsenic intake from well water. A similar result was also obtained for cancer incidence and arsenic. Additionally, there are certain geographic areas that appear to have bladder cancer mortality rates beyond the simple association with the studied covariates. These geographic areas warrant further investigation to better under-stand why cancer mortality is unusually high in such geographic areas and to potentially identify additional local concerns or needs to further address bladder cancer mortality in those specific sites.Journal ArticleFinal article publishe

    Tissue transglutaminase is an in situ substrate of calpain: Regulation of activity

    No full text
    Tissue transglutaminase (tTG) is a calcium-dependent enzyme that catalyzes the transamidation of specific polypeptide-bound glutamine residues, a reaction that is inhibited by GTP. There is also preliminary evidence that, in situ, calpain and GTP may regulate tTG indirectly by modulating its turnover by the calcium-activated protease calpain. In the present study, the in vitro and in situ proteolysis of tTG by calpain, and modulation of this process by GTP, was examined. tTG is an excellent substrate for calpain and is rapidly degraded. Previously it has been demonstrated that GTP binding protects tTG from degradation by trypsin. In a similar manner, guanosine-5 ‘-O- (3-thiotriphosphate) protects tTG against proteolysis by calpain. Treatment of SH-SY5Y cells with 1 nM maitotoxin, which increases intracellular calcium levels, resulted in a significant increase in in situ TG activity, with only a slight decrease in tTG protein levels. In contrast, when GTP levels were depleted by pretreating the cells with tiazofurin, maitotoxin treatment resulted in an ~50% decrease in tTG protein levels, and a significant decrease in TO activity, compared with maitotoxin treatment alone. Addition of calpain inhibitors inhibited the degradation of tTG in response to the combined treatment of maitotoxin and tiazofurin and resulted in a significant increase in in situ TG activity. These studies indicate that tTG is an endogenous substrate of calpain and that GTP selectively inhibits the degradation of tTG by calpain.Journal ArticleFinal article publishe

    Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease

    No full text
    The hippocampus of Alzheimer's disease brain has been shown to be highly oxidized compared to age-matched controls. One of the most sensitive targets of oxidation is anionic sulfur which can be found within the active site of members of the cysteine-protease family. Thus, while members of the cysteine-protease family such as the calpains and caspases have been found to be in an active conformation in vulnerable brain regions in AD it is possible that their proteolytic activity is hampered due to the robust oxidative stress found at these locations. To address this issue, the amount of caseinolytic activity present in the hippocampus from post-mortem brain samples of AD and age-matched controls was determined. No difference in caseinolytic activity in the absence of exogenous reducing agent was observed between AD and control. However, after addition of the thiol-specific reducing agent, dithiothreitol (DTT), the amount of caseinolytic activity was significantly increased in AD compared to the DTT-mediated increase in control. This suggests that the cysteine proteases are more oxidized in AD brain and that latent proteolytic activity in AD brain can be released by antioxidants. Further testing revealed that the calcium-dependent caseinolytic activity was significantly lower in AD brain compared to controls. This is despite the fact that the major calcium-dependent thiol protease, calpain, is threefold more activated in AD brain based on autolytic activation measured by Western blotting. This calcium-dependent protease difference between AD and control brains was negated by addition of DTT. These data suggest that cysteine protease activity in AD brain is inactivated by oxidants, which is evident by the ability of thiol-specific reducing agents such as DTT to rescue and recover activity.Journal Articl
    corecore