982 research outputs found

    Partially directed paths in a wedge

    Full text link
    The enumeration of lattice paths in wedges poses unique mathematical challenges. These models are not translationally invariant, and the absence of this symmetry complicates both the derivation of a functional recurrence for the generating function, and solving for it. In this paper we consider a model of partially directed walks from the origin in the square lattice confined to both a symmetric wedge defined by Y=±pXY = \pm pX, and an asymmetric wedge defined by the lines Y=pXY= pX and Y=0, where p>0p > 0 is an integer. We prove that the growth constant for all these models is equal to 1+21+\sqrt{2}, independent of the angle of the wedge. We derive functional recursions for both models, and obtain explicit expressions for the generating functions when p=1p=1. From these we find asymptotic formulas for the number of partially directed paths of length nn in a wedge when p=1p=1. The functional recurrences are solved by a variation of the kernel method, which we call the ``iterated kernel method''. This method appears to be similar to the obstinate kernel method used by Bousquet-Melou. This method requires us to consider iterated compositions of the roots of the kernel. These compositions turn out to be surprisingly tractable, and we are able to find simple explicit expressions for them. However, in spite of this, the generating functions turn out to be similar in form to Jacobi θ\theta-functions, and have natural boundaries on the unit circle.Comment: 26 pages, 5 figures. Submitted to JCT

    Nanoscale NEXAFS for Probing TiO2 B Nanoribbons

    Get PDF
    TiO2 nanostructures exist in different crystallographic phases including brookite, anatase, rutile, and TiO2 amp; 8722;B bronze . Among these, due to its open channel like crystal structure which can enhance ion mobility, the TiO2 amp; 8722;B phase has been reported as an optimal anode material for lithium ion batteries, particularly in the form of nanowires [1]. In view of device applications, where different phases may coexist and TiO2 amp; 8722;B particles may transform to the thermodynamically stable anatase phase, it is important to identify and understand the structural and electronic differences between these two phases. Here we have studied the electronic structure of TiO2 nanoribbons in TiO2 amp; 8722;B and anatase phases using polarization dependent near edge X ray absorption fine structure spectroscopy NEXAFS in the transmission X ray microscope TXM and density functional theory DFT [2,3]. NEXAFS at both the O K edge and the Ti L edge is very sensitive to the local bonding environment in TiO2 based materials and thus provides diagnostic information about the crystal structures and oxidation states. We report the observation of strong linear dichroism in the O K edge spectra of single TiO2 amp; 8722;B nanoribbons. Using DFT calculations we show that the dichroism is a consequence of the directional Ti amp; 8722;O bonding in the monoclinic crystal structur

    Force induced triple point for interacting polymers

    Get PDF
    We show the existence of a force induced triple point in an interacting polymer problem that allows two zero-force thermal phase transitions. The phase diagrams for three different models of mutually attracting but self avoiding polymers are presented. One of these models has an intermediate phase and it shows a triple point but not the others. A general phase diagram with multicritical points in an extended parameter space is also discussed.Comment: 4 pages, 8 figures, revtex

    Further Series Studies of the Spin-1/2 Heisenberg Antiferromagnet at T=0: Magnon Dispersion and Structure Factors

    Full text link
    We have extended our previous series studies of quantum antiferromagnets at zero temperature by computing the one-magnon dispersion curves and various structure factors for the linear chain, square and simple cubic lattices. Many of these results are new; others are a substantial extension of previous work. These results are directly comparable with neutron scattering experiments and we make such comparisons where possible.Comment: 15 pages, 12 figures, revised versio

    New extended high temperature series for the N-vector spin models on three-dimensional bipartite lattices

    Get PDF
    High temperature expansions for the susceptibility and the second correlation moment of the classical N-vector model (O(N) symmetric Heisenberg model) on the sc and the bcc lattices are extended to order β19\beta^{19} for arbitrary N. For N= 2,3,4.. we present revised estimates of the critical parameters from the newly computed coefficients.Comment: 11 pages, latex, no figures, to appear in Phys. Rev.

    A closer look at symmetry breaking in the collinear phase of the J1J2J_1-J_2 Heisenberg Model

    Full text link
    The large J2J_2 limit of the square-lattice J1J2J_1-J_2 Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a meanfield spin-wave theory to study the excitation spectra in this phase and look for a finite temperature Ising-like transition, corresponding to a broken symmetry of the square-lattice, as first proposed by Chandra et al. (Phys. Rev. Lett. 64, 88 (1990)). We find that the spectra reveal the symmetries of the ordered phase. However, we do not find any evidence for a finite temperature phase transition. Based on an effective field theory we argue that the Ising-like transition occurs only at zero temperature.Comment: 4 pages and 5 figure

    First Results from the X Ray Microscopy Beamline U41 PGM1 XM at BESSY II

    Get PDF
    The newly designed beamline U41 PGM1 XM at BESSY II for the Helmholtz Zentrum Berlin HZB transmission soft X ray microscope TXM was successfully set up and went in operation in 2017 [1]. During the commissioning of the beamline we determined the spectral resolution, horizontal focus value at the exit slit and the flux for different undulator harmonics. The experimental results meet the values from raytracing calculations. For the horizontal focus at the exit slit position we calculated a FWHM value of 108 m at 510 eV which is in good agreement with the experimental value of 107 m. The flux for photon energies higher than 550 eV is now much higher compared to the previous U41 SGM XM beamline [2] Fig.

    Complex-Temperature Singularities in the d=2d=2 Ising Model. III. Honeycomb Lattice

    Get PDF
    We study complex-temperature properties of the uniform and staggered susceptibilities χ\chi and χ(a)\chi^{(a)} of the Ising model on the honeycomb lattice. From an analysis of low-temperature series expansions, we find evidence that χ\chi and χ(a)\chi^{(a)} both have divergent singularities at the point z=1zz=-1 \equiv z_{\ell} (where z=e2Kz=e^{-2K}), with exponents γ=γ,a=5/2\gamma_{\ell}'= \gamma_{\ell,a}'=5/2. The critical amplitudes at this singularity are calculated. Using exact results, we extract the behaviour of the magnetisation MM and specific heat CC at complex-temperature singularities. We find that, in addition to its zero at the physical critical point, MM diverges at z=1z=-1 with exponent β=1/4\beta_{\ell}=-1/4, vanishes continuously at z=±iz=\pm i with exponent βs=3/8\beta_s=3/8, and vanishes discontinuously elsewhere along the boundary of the complex-temperature ferromagnetic phase. CC diverges at z=1z=-1 with exponent α=2\alpha_{\ell}'=2 and at v=±i/3v=\pm i/\sqrt{3} (where v=tanhKv = \tanh K) with exponent αe=1\alpha_e=1, and diverges logarithmically at z=±iz=\pm i. We find that the exponent relation α+2β+γ=2\alpha'+2\beta+\gamma'=2 is violated at z=1z=-1; the right-hand side is 4 rather than 2. The connections of these results with complex-temperature properties of the Ising model on the triangular lattice are discussed.Comment: 22 pages, latex, figures appended after the end of the text as a compressed, uuencoded postscript fil

    Numerical Linked-Cluster Approach to Quantum Lattice Models

    Full text link
    We present a novel algorithm that allows one to obtain temperature dependent properties of quantum lattice models in the thermodynamic limit from exact diagonalization of small clusters. Our Numerical Linked Cluster (NLC) approach provides a systematic framework to assess finite-size effects and is valid for any quantum lattice model. Unlike high temperature expansions (HTE), which have a finite radius of convergence in inverse temperature, these calculations are accurate at all temperatures provided the range of correlations is finite. We illustrate the power of our approach studying spin models on {\it kagom\'e}, triangular, and square lattices.Comment: 4 pages, 5 figures, published versio

    Zeros of the Partition Function for Higher--Spin 2D Ising Models

    Get PDF
    We present calculations of the complex-temperature zeros of the partition functions for 2D Ising models on the square lattice with spin s=1s=1, 3/2, and 2. These give insight into complex-temperature phase diagrams of these models in the thermodynamic limit. Support is adduced for a conjecture that all divergences of the magnetisation occur at endpoints of arcs of zeros protruding into the FM phase. We conjecture that there are 4[s2]24[s^2]-2 such arcs for s1s \ge 1, where [x][x] denotes the integral part of xx.Comment: 8 pages, latex, 3 uuencoded figure
    corecore