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We show the existence of a force induced triple point in an interacting polymer problem that allows two
zero-force thermal phase transitions. The phase diagrams for two different models of mutually attracting but
self-avoiding polymers are presented. One of these models has an intermediate phase and it shows a triple
point. A general phase diagram with multicritical points in an extended parameter space is also discussed.
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Soon after the discovery of the double helical structure of
double-stranded DNAsdsDNAd, its melting by change of
temperature or thepH of the solvent was recognizedf1g.
Only recently it has been realized that there can be a force-
induced unzipping transitionf2g of a DNA with a force ap-
plied solely at one end. In both the thermal and the forced
cases, the phase transition takes a double-stranded form to
two single strands. The prediction of the unzipping transition
based on interacting Gaussian chainsf2g was immediately
reconfirmed by a dynamical approachf3g. Results on the
unzipping transition are now available from extensive exact
solutions of lattice modelsf4–6g, simple models of
quenched-averaged DNAf7g, Monte Carlo simulations of a
three-dimensional model with self- and mutually avoiding
walks f8g, etc., on the theoretical front, and for real DNA
from experimentsf9g. From the theoretical results, it emerges
that the qualitative features of the unzipping transition are
insensitive to the dimensionalitysdd of the models and are
seen even in two-dimensional models. These results include
a re-entrancef4–6g in the low temperature region.

In the systems studied so far, there is only one zero force
thermal phase transition. In such cases, with two intensive
variables, temperatureT and forceg, there is an unzipping
transition line,g=gcsTd, in the g-T plane, demarcating the
bound or zipped phase from the unzipped phase. This gives
the unzipping phase boundary. In case there are more than
one transition, the phase diagram will be influenced by the
intermediate phases. A special situation corresponds to the
case where the intermediate phase is stabilized by entropy
and cannot be produced by a force in the ground state. Our
aim is to determine the global phase diagram for the unzip-
ping transition where the existence of such an intermediate
phase leads to a triple point in theg-T plane.

We consider two models, A and B, which differ in the

nature of the mutual interaction of the two strands. These
models are general enough to be defined in anyd though, for
computational limitations, we consider the two-dimensional
square lattice version only. Let us consider two linear poly-
mer chains which are mutually attracting self-avoidingf10g
in nature. On a square lattice, the polymers are not allowed
to cross each other as shown in Fig. 1. Monomerssalso
called basesd are the sites occupied by the polymers and the
interactions are among the “bases” so that an interacting pair
may also be called a base pair. There is an attractive interac-
tion between monomers or bases only if they are of opposite
strands and are nearest neighbors on the lattice. The nearest
neighbor interaction mimics the short range nature of the
hydrogen bonds. In model A, any monomer of one strand can
interact with any monomer of the other strand. In model B,
monomeri of one strand can interact only with theith mono-
mer of the other strand. This model is similar to the models
of DNA studied earlierf11g though it does not take into
account the directional nature of the hydrogen bonds. A more
realistic model incorporating this feature, similar to models
in the context of relative stabilities of DNA hairpin structures
f12g, has also been studied but the results of interest in this
paper turn out to be similar to model B. Such modifications
are therefore not discussed in detail. The interaction energy
in all the cases is taken as −ese.0d and we shall choosee
=1. In all cases the monomers at one endsindex=1d of each
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FIG. 1. sad–sdd represent the possible conformations of models
A and B. For model Asad and sbd are two possible states withscd
representing a possible ground state. For model B,sad represents the
ground state andsdd represents a partial bound state. Note thatsdd
differs from sbd in the nature of interactions represented by the
dotted lines. In model B,scd has no valid interaction and would
represent an open state.
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strand are always kept fixed occupying nearest neighbor sites
on the lattice.

For model A the ground state is a spiral of the type shown
in Fig. 1scd while for model B it is a zipped state as in Fig.
1sad. Because of the constraint of holding the monomers with
index 1 at nearest neighbor sites, model A is also equivalent
to a diblock copolymer modelf13g which has two phase
transitions in zero force with increasing temperature. The
polymers go from a compact spiral-like phase to a zipped
phasesa first order transitiond and the zipped phase then
melts scontinuous transitiond at a still higher temperature. It
is this intermediate phase that is of interest to us. By intro-
ducing a three-body interaction the intermediate phase in
model A can be made to disappear so that a multicritical
point emerges in the extended parameter space. This case is
also considered in the paper. In view of the simple ground
state in models B, no such intermediate phases are expected
or known.

A force is applied at one endfFig. 2sadg or at the middle
fFig. 2sbdg of the chains, in they direction. The contribution
to energy by this force is −gy wherey is the absolute dis-
tance in they direction between the two strands at the point
of application of the force. A recent studyf6g showed a rich
phase diagram when a force is applied somewhere in the
interior. Furthermore, such situations occur in many pro-
cesses like gene expression where RNA is formed in bubbles
or eye-type configurations on DNA. Motivated by these, we
consider the case of a force applied at the midpoint. A low
temperature analysis shows that the phase diagram is ex-
pected to be different from the end case. We compare the
g-T phase diagrams of model A vs model B. In the process
we identify the unzipping force as a relevant variable re-
quired for complete characterization of the critical and the
multicritical points of model A.

The thermodynamic properties associated with the unzip-
ping transition are obtained from the partition function which
can be written as a sum over all possible configurations

ZNsv,ud = o
n,y

Csm,ydvmuy. s1d

Here N is the chain length of each of the two strands,v
=exps1/Td is the Boltzmann weight associated with each
base pairstaking the Boltzmann constantkB=1d andm is the
total number of intact base pairs in the chain. Finallyu is the
Boltzmann weight, expsg/Td associated with force.Csm,yd
is the number of distinct configurations havingm bound base
pairs whose endsor midd points are at a distancey apart. We

have obtainedCsm,yd for Nø16 monomers in two dimen-
sionsd=2d and analyzed the partition function through series
analysis. We prefer this technique because in this case the
scaling corrections are correctly taken into account by suit-
able extrapolation technique. To achieve the same accuracy
by the Monte Carlo method, a chain of about two orders of
magnitude larger than in the exact enumeration method must
be consideredf14g.

The reduced free energy per base pair is found from the
relation Gsv ,ud=limN→`s1/Ndlog Zsv ,ud. The limit N→`
is found by using the ratio methodf15g for extrapolation.
The transition point for zero forcesi.e., thermal meltingd can
be obtained from the plot ofGsv ,ud versusv or from the
peak value of]2G/]sln vd2. For self-avoiding walk atu=1,
we find Tc=1.1±0.1 and 0.61±0.08 for models A and B,
respectively. With a forcesuÞ1d, the phase boundary is ob-
tained from the fluctuation inm. Figure 3 shows the variation
of fluctuation ofm with temperature for model A and B.

For model A, we see two peaks in the temperature depen-
dence of the fluctuation inm for small g sFig. 3d. The low
temperature peak is the transition where the spiral state goes
over to the zipped state while the second peak is the unzip-
ping transition. The transition can be seen in Fig. 3scd where
the fraction of the number of bound base pairskml /N are
shown to vanish as the force increases. One therefore finds

FIG. 2. Schematic figures for a forcesad applied at one end, and
sbd applied at the middle. Fixed endpoints are indicated by stars.

FIG. 3. Variations in fluctuation ofm with temperaturesTd for
g=0.0 and 0.1 are shown for model Asad and model Bsbd. scd
shows the sharp drop of the fraction of bound base pairsskml /Nd
for model A sN=16d as the force exceeds the critical force at a
constant temperature.
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three transition lines, spiral-unzipped, spiral-zipped, and
zipped-unzipped. The unzipped phase is thermodynamically
identical to the zero force swollen phase except for stretching
by the force. The phase diagrams are shown in Fig. 4. Since
the two peaks in Fig. 3sad approach each other as the force
increases, it becomes difficult to locate the spiral to zipped
phase boundary at higher force. Therefore, we have higher
uncertainitiess,0.04d in locating the spiral to zipped transi-
tion at higher force and so this part of the line is not shown
in Fig. 4. It is to be noted that without force the spiral com-
pact phase cannot be directly transformed into the unzipped,
swollen phase. We argue that each of these lines are first
order in nature so that the meeting point of the three lines is
a triple point. From thermodynamic stability analysisf16g, it
is known that the angle between two coexistence lines at a
triple point in a phase diagram must be less thanp. There-
fore, a discontinuity in the slope in the unzipping phase
boundary in theg-T plane is expected at the potential triple
point. Figure 4sbd shows the meeting of the two unzipping
boundaries. From the intersection of the boundaries, our es-
timate of the location of the triple point isgt=0.35±0.02,
Tt=0.75±0.02.

Our results are based on theN=16 s32 monomersd enu-
merations. For this length there is significant surface contri-
bution. The ground state energy isE0=−f2N−OsÎNdg for
model A andE0=−Ne for model B for a DNA ofN mono-
merssbasesd. TheOsÎNd correction for model A only comes
from the monomers on the boundary. If we ignore the surface
contribution svalid for large Nd the spiral to zipped state
transition temperatureTc1 may be estimated from a simple

energy balance argument. The spiral state has an energyE0
=−2N with negligible entropy while the zipped state has the
free energy=−N−NT ln mb, where lnmb is the entropy per
base pair of the zipped phase. Equating these two we get
Tc1=1/ ln mb−OsN−1/2d, where the surface correction has
also been shown. If we usemb=2.6382, the connectivity con-
stant for the square lattice self-avoiding walkf10g, we find
Tc1<1.04 which is close to the value known from other es-
timates f13g. Our value ofTc1=0.5 is consistent with the
above form since the surface correction lowers the estimate
of Tc1.

The zipped state for model A cannot be obtained by en-
ergy minimization only nor can it be produced by force at
T=0 because the end separation remains subextensive going
from OsÎNd in the spiral phase toOs1d in the zipped phase.
It is the gain in entropyswith respect to spirald that gives
stability to the zipped phase in the intermediate temperature
range s“entropy-stabilized” phased. Since this spiral-zipped
phase boundary cannot meet theT=0 force axis and since,
for largeN, the force term cannot affect this transition, one
would expect a phase boundary parallel to theg axis. It also
follows that the spiral to the zipped state transition remains
first order as it is for the zero-force case. It should however
be noted that the surface contribution in the spiral state in the
form of the extra energy,gÎN actually helps in the stabili-
zation of the spiral structure over the zipped phase for small
g, at least for smallN. As a result, the phase boundary ob-
tained for finiteN has a finite slope as shown in Figs. 4sad
and 4sbd.

To determine the nature of the spiral-unzipped transition,
we use a low temperature expansion. AtT=0, the critical
force can be found from a matching of the ground state en-
ergy with the energy of the completely unzipped state. If the
force stretches the strands completely, the unzipped state has
the energy=−2Ng taking the bond length to be unity. Com-
paring this with the bound state energyE0, we seegcsT=0d
=E0/2N. For largeN, E0=2N and so we getgcsT=0d=1,
while it is 0.5 for models B. For finiteN, if the surface
correction is taken into account, thengc=1−s1/Î2Nd
<0.8232 forN=16. The value shown in Fig. 4 is very close
to this estimate rather than the largeN value. In absence of
large N data, extrapolations have not been attempted for
model A. Since the fraction of bound pairs shows a jump
from a finite value to 0 as the force exceedsgc, the T=0
force induced transition is first order.

The low temperature phase boundary for the mid-case can
be obtained by an extension of theT=0 argument given
above. Following Ref.f6g, let us consider the situation with
the force applied at a positionsNs0,sø1d, from the fixed
end. The unzipped state has the energy=−2sNg taking the
bond length to be unity. This needs to be compared with the
bound state energyE0=−aeN wherea=2 for model A but
a=1 for model B. We therefore seegcsT=0d=a/2s. A factor
of 2 difference in the end case vs mid-case and model A vs B
are seen in Fig. 4.

The phase boundary close toT=0 can be obtained by
considering configurations wherem base pairs for the end
case or a bubble of 2m base pairs for the mid-case have been
unzipped. AtT close to zero, the unzipped part of the chains

FIG. 4. Force-temperaturesg-Td phase diagrams for the end and
the midcase, forsad, sbd model A, andscd model B. The spiral to
zipped transition is shown only for the end case.sbd shows the
region near the triple point. The crossing point is the location of the
triple point.
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remain completely stretched with negligible entropy. Conse-
quently the free energy of such configurations with respect to
the completely bound state isDF=smsa+T ln mBd−gm,
wheres=1 for the end case or 2 for the mid-case, and lnmB
is the entropy per base pair of the bound state which is lost
on unzipping the base pairs. For the mid-case a largem is
favorablesmøN/2d if

g . gcsTd ; 2sa + T ln mBd

while for the end case, the critical force is given bygcsTd
=a+T ln mB. In either case, a reentrance is possible if
ln mB.0. For both the models studied here, lnmB=0, and
therefore, unlike other DNA problemsf4–6g, no reentrance is
expected. The free energy expression also shows a jump or
discontinuity in the number of unzipped pairs across the
phase boundary just as atT=0. The transition line in the low
temperature region is therefore first order.

For the transition in the small force region at temperatures
close to the melting pointsbut away from the critical regiond,
the entropies of the unzipped single strands need to be con-
sidered. This can be done by using polymer statistics. The
unbound region is like a two-dimensional SAW of length 2m
under a stretching force. The probabilityf10g that a SAW
will have an end-to-end separationy is

Psy,md , expf− csym−nddg,

wheren is the polymer size exponent,d=s1−nd−1 andc is a
constant. This gives an extra contribution to the entropy so
that the free energy can be written as

DFsN,m,y,gd = DF0sN,md − gy− csym−ndd,

where

DF0sN,md = mf2fusTd − fzsTdg

is the free energy in zero force,fz,u being the free energies of
the zipped and the swollen chainsse=0d in zero force. Since
the zipped state is the thermodynamically stable phase, we
have fzsTd,2fusTd. Minimization with respect toy then
givesy,mg1/sd−1d. Using this, we obtain

DFsN,m,gd = DF0sN,md − c1mg1/n

using the relation betweenn and d. A further minimization
with respect tom then givesgcsTd,u2fusTd− fzsTdun with a
jump in m. It is therefore a first order transition. This argu-
ment is valid away from the critical region if the melting is
continuous, as in model A, because of the bubble formations
of all length scales by thermal fluctuations. But by continuity
the transition is to remain first order becoming continuous or
critical only at the terminal point in zero field.

The results for model A can be extended to a case with a
three-body interaction that stabilizes the spiral phasef13g.
Let there be an interactiond that favors a configuration with
a monomer of one strand sandwiched between the monomers
of the other strand on the two nearest neighbors on the same
axis as shown in Fig. 5sad. Let us call such a contact as ad
contact. This is a three-body interaction so that ad contact
has energy 2e+d. For corner sharing configurationsfan ex-
ample shown in Fig. 5sadg there is no three-body interaction.

Let us first consider the zero force phase diagram. For
large negatived, strong attractive three-body interaction
yields a compact spiral ground state dominated by thed con-
tacts. In this regime, there is only one thermal denaturation
transition from the compact spiral phase to the swollen
phase. However, ford.0, i.e., repulsive three-body interac-
tion, there is an intermediate zipped phase formed via the
pairwise attraction. For suchd, the ground state configura-
tion is a compact but nonspiral phase, mostly devoid ofd
contacts. The three phases are similar to what we have seen
for d=0. Therefore, in thed-T plane atg=0, a multicritical
point fM in Fig. 5sadg occurs withd=dM ,0. This pointM is
the meeting of the line of continuous thermal denaturation
transition of the zipped phase and the first-order compact-
zipped transition. In the compact case without anyd contact,
a mean field estimate of the ground state energy, assuming
equal proportion of double and single contacts, gives

FIG. 5. sColor onlined sad Schematic phase diagram in thed-T
plane in zero force. Thed contact is also shown for the region
where it dominates. The dotted line is a crossover line for the two
compact configurations distinguished by the nature of contacts as
indicated.M is the multicritical pointsat zero forced where the
zipped phase vanishes. The thick line is the first order line while the
denaturation of the zipped phase is a continuous transitionsdashed
lined. sbd Proposed phase diagram in theg-d-T space. The line
connecting the triangles is a line of triple points ending onM. The
shaded surface separates the compact phase from the zipped phase
and is parallel to theT=0 planesalso shaded for clarityd.
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E=−s3/2dN. By comparing with the energy of the spiral
state, namely −2N+2Nd for N→`, one finds the crossover
at T=0 to be atd<0.5. In thed-T phase diagram,m such a
crossover linefdotted line in Fig. 5sadg should end atM.

Let us now consider the effect of a force at one end. Our
results for thed=0 case suggest that so long as the zipped
phase is thermodynamically stable, there is a triple point un-
der a force. Hence, there is a line of triple points in the
regiondùdM terminating on M. Theg-T-d phase diagram is
schematically shown in Fig. 5sbd. The shaded surface sepa-
rates the compact phase from the zipped phase and has the
line of triple points at its edge. The zipped phase is inside the
pencil shaped region withM at its tip. Even though in zero
force, M resembles a critical endpointsa second order line
ending on a first-order lined, actually there is an additional
line of triple points ending there. This line exists only when
there is a force. We are not aware of any other such multi-
critical point, especially in polymers. The scaling or univer-

sal behavior at such a multicritical pointM remains a major
open issue.

To summarize, we have determined the phase diagram of
two polymer models under a force and have shown the ex-
istence of a force induced triple point when the interactions
allow an entropy-stabilized phase before melting. The unzip-
ping force is a relevant term at the continuous meltinglike
transition and is therefore important for a complete charac-
terization of the critical behavior. Our results open up the
possibility of much richer phase transitions and multicritical
behaviors in polymeric systems when subjected to an unzip-
ping force. We hope that single molecule experiments would
be able to explore experimentally this area in polymers.
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