486 research outputs found

    Supersonic Jet Excitation using Flapping Injection

    Full text link
    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used to investigate the change in flow struc- tures of a supersonic (M=1.56) jet from a converging-diverging nozzle. Six fluidic actuators, evenly distributed around the nozzle exit, inject air in a radial direction towards the main flow axis with a total mass flow ratio of 3%. Steady injection is compared with flapping injection. With flapping injection turned on, the injection angle of each injector is varied sinusoidally in the nozzle exit plane and the variation is the same for all injectors. This fluid dynamics video is submitted to the APS DFD Gallery of Fluid Motion 2013 at the 66 the Annual Meeting of the American Physical Society, Division of Fluid Dynamics (24-26 November, Pittsburgh, PA, USA).Comment: 3 pages, 2 linked animations/video

    Duplex tab exhaust nozzle

    Get PDF
    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss

    Strong interaction of a turbulent spot with a shock-induced separation bubble

    No full text
    Direct numerical simulations have been conducted to study the passage of a turbulent spot through a shock-induced separation bubble. Localized blowing is used to trip the boundary layer well upstream of the shock impingement, leading to mature turbulent spots at impingement, with a length comparable to the length of the separation zone. Interactions are simulated at free stream Mach numbers of two and four, for isothermal (hot) wall boundary conditions. The core of the spot is seen to tunnel through the separation bubble, leading to a transient reattachment of the flow. Recovery times are long due to the influence of the calmed region behind the spot. The propagation speed of the trailing interface of the spot decreases during the interaction and a substantial increase in the lateral spreading of the spot was observed. A conceptual model based on the growth of the lateral shear layer near the wingtips of the spot is used to explain the change in lateral growth rat

    Experimental investigations of mixing characteristics in model rotating detonation engine geometries

    Get PDF
    This work examines the mechanisms of reactant mixing in a model Rotating Detonation Engine (RDE) geometry. RDEs are emerging as one of the highest potential applications for achieving Pressure Gain Combustion (PGC). Reactant mixing has been identified as a crucial component of efficient RDE operation. Therefore, a scaled model of a typical RDE engine geometry was examined in a water tunnel using Planar Laser Induced Fluorescence (PLIF) to observe the influence of fuel injection position, confinement geometry, and blowing ratio on the mixing characteristics and quality of mixing

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study

    Impaired aortic distensibility and elevated central blood pressure in Turner Syndrome:a cardiovascular magnetic resonance study

    Get PDF
    Abstract Background Women with Turner Syndrome have an increased risk for aortic dissection. Arterial stiffening is a risk factor for aortic dilatation and dissection. Here we investigate if arterial stiffening can be observed in Turner Syndrome patients and is an initial step in the development of aortic dilatation and subsequent dissection. Methods Fifty-seven women with Turner Syndrome (48 years [29–66]) and thirty-six age- and sex-matched controls (49 years [26–68]) were included. Distensibility, blood pressure, carotid-femoral pulse wave velocity (PWV), the augmentation index (Aix) and central blood pressure were determined using cardiovascular magnetic resonance, a 24-h blood pressure measurement and applanation tonometry. Aortic distensibility was determined at three locations: ascending aorta, transverse aortic arch, and descending aorta. Results Mean aortic distensibility in the descending aorta was significantly lower in Turner Syndrome compared to healthy controls (P = 0.02), however, this was due to a much lower distensibility among Turner Syndrome with coarctation, while Turner Syndrome without coarctation had similar distensibility as controls. Both the mean heart rate adjusted Aix (31.4% vs. 24.4%; P = 0.02) and central diastolic blood pressure (78.8 mmHg vs. 73.7 mmHg; P = 0.02) were higher in Turner Syndrome compared to controls, and these indices correlated significantly with ambulatory night-time diastolic blood pressure. The presence of aortic coarctation (r = − 0.44, P = 0.005) and a higher central systolic blood pressure (r = − 0.34, P = 0.03), age and presence of diabetes were inversely correlated with aortic distensibility in TS. Conclusion Aortic wall function in the descending aorta is impaired in Turner Syndrome with lower distensibility among those with coarctation of the aorta, and among all Turner Syndrome higher Aix, and elevated central diastolic blood pressure when compared to sex- and age-matched controls. Trial registration The study was registered at ClinicalTrials.gov (#NCT01678274) on September 3, 2012

    Antisymmetric oscillation modes in rectangular screeching jets

    Get PDF
    In this paper, the origin and the properties of the oscillation modes in screeching non-ideally expanded rectangular jets are investigated using compressible implicit LES of rectangular supersonic jets. At the exit of a converging diverging rectangular nozzle of aspect ratio 2 and of design Mach number 1.5, the jets are under- and over-expanded. Seven simulations with four different temperature ratios ranging from 1 to 3 and two different nozzle pressure ratios are performed. The geometry of the nozzle and the exit conditions are chosen such that to match the experimental study conducted at the University of Cincinnati. First, the over-expanded jets are studied. It is shown that the total number of shock cells decreases with increased temperature ratio. However, the temperature does not influence the size of the first shock cell and the linear decrease of the shock cell size in the downstream direction. The spreading of the jet is observed to be higher along the minor axis plane than along the major axis plane. The intensity of the screech noise increases with the temperature ratio in the present study although the opposite is observed in the experiments. Moreover, for jet temperature ratios of 2.5 and 3, the strong flapping motion of the jet along the minor axis plane due to the screech feedback mechanism yields to an antisymmetric organization of the Mach wave radiation. Thereafter, the near- and far-field acoustic are studied. In the near-field, screech tones are captured, whose frequencies are consistent with both experimental data and theoretical models. In the far-field, four acoustic components typical of non-ideally expanded supersonic jets are observed, namely the screech noise, the broadband shock-associated noise, the mixing noise and the Mach wave noise. Their directivities and frequencies are in agreement with experimental results and models. The mechanism of the screech noise generation is studied by using a Fourier decomposition of the pressure field. For the four over-expanded jets, a flapping motion along the diagonal or along the minor axis plane of the jet is noted. Finally, the hypothesis that the acoustic waves completing the feedback loop in these jets are linked to the upstream-propagating acoustic wave modes of the equivalent ideally expanded jets is tested. Using a jet vortex sheet model to describe the dispersion relations of these modes, it is found that this hypothesis allows us to explain the antisymmetric jet oscillation observed at the screech frequencies. Based on frequency-wavenumber decomposition of the pressure fluctuations in the jets, it is shown that at the screech frequencies, acoustic waves propagating in the upstream direction at the ambient speed of sound exist also in the jet flow, additionally to the acoustic waves propagating outside of the jet. These acoustic waves belong to the neutral acoustic wave modes of the equivalent ideally expanded jet. These results support the idea that a vortex sheet model of the corresponding 2-D planar ideally expanded jet is capable of predicting the wave modes of a non-ideally expanded rectangular supersonic jet. They also suggest that these waves are involved in the feedback part of the screech mechanism; explaining why, for the simulated screeching rectangular jets, the associated oscillation mode is antisymmetric
    • …
    corecore