128 research outputs found
Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders
BACKGROUND: Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs.
METHODS: We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1
RESULTS: Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1
CONCLUSIONS: These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics
The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation.
Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma
MicroRNA profiling reveals marker of motor neuron disease in ALS models
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining thein vivomiRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENTAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.</jats:p
Precision-Guided or Blunt? The Effects of US Economic Sanctions on Human Rights
We use endogenous treatment-regression models to estimate the causal average treatment effect of US economic sanctions on four types of human rights. In contrast to previous studies, we find no support for adverse effects of sanctions on economic rights, political and civil rights, and basic human rights. With respect to women's rights, our findings even indicate a positive relationship. Emancipatory rights are, on average, strengthened when a country faces sanctions by the US. Our findings are robust when applying various changes to the empirical specification. Most importantly, this study provides strong evidence that the endogeneity of treatment assignment must be modelled when the consequences of sanctions are studied empirically
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
The Somatic Genomic Landscape of Glioblastoma
We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
- …