246 research outputs found

    The View from Syria: In War on Terrorism, Humanitarian Law Takes Back Seat

    Get PDF
    The theme of this conference is atrocity prevention, and the unstated major premise is that something has gone wrong in international life. Having reported or edited international news for half a century and focused on humanitarian law for 25 years, I will offer my reality check. Michael Scharf’s program note speaks of the world hitting a low point in the amelioration of human suffering in conflict. My observation is that he is right. In attending this conference, you are way ahead of the general public, way ahead of our political class. Humanitarian law after making broad advances at the turn of this century, is now in a state of crisis. The question is what to do about it

    QuasiMotiFinder: protein annotation by searching for evolutionarily conserved motif-like patterns

    Get PDF
    Sequence signature databases such as PROSITE, which include amino acid segments that are indicative of a protein's function, are useful for protein annotation. Lamentably, the annotation is not always accurate. A signature may be falsely detected in a protein that does not carry out the associated function (false positive prediction, FP) or may be overlooked in a protein that does carry out the function (false negative prediction, FN). A new approach has emerged in which a signature is replaced with a sequence profile, calculated based on multiple sequence alignment (MSA) of homologous proteins that share the same function. This approach, which is superior to the simple pattern search, essentially searches with the sequence of the query protein against an MSA library. We suggest here an alternative approach, implemented in the QuasiMotiFinder web server (), which is based on a search with an MSA of homologous query proteins against the original PROSITE signatures. The explicit use of the average evolutionary conservation of the signature in the query proteins significantly reduces the rate of FP prediction compared with the simple pattern search. QuasiMotiFinder also has a reduced rate of FN prediction compared with simple pattern searches, since the traditional search for precise signatures has been replaced by a permissive search for signature-like patterns that are physicochemically similar to known signatures. Overall, QuasiMotiFinder and the profile search are comparable to each other in terms of performance. They are also complementary to each other in that signatures that are falsely detected in (or overlooked by) one may be correctly detected by the other

    Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    Get PDF
    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
    corecore