3 research outputs found

    Deepint.net: A rapid deployment platform for smart territories

    Get PDF
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E, the project My-TRAC: My TRAvel Companion (H2020-S2RJU-2017), the project LAPASSION, CITIES (CYTED 518RT0558) and the company DCSC. Pablo Chamoso’s research work has been funded through the Santander Iberoamerican Research Grants, call 2020/2021, under the direction of Paulo Novais

    An efficient management platform for developing smart cities: solution for real-time and future crowd detection

    No full text
    A smart city is an environment that uses innovative technologies to make networks and services more flexible, effective, and sustainable with the use of information, digital, and telecommunication technologies, improving the city’s operations for the benefit of its citizens. Most cities incorporate data acquisition elements from their own systems or those managed by subcontracted companies that can be used to optimise their resources. Energy consumption, smart meters, lighting, irrigation water consumption, traffic data, camera images, waste collection, security systems, pollution meters, climate data, etc. The city-as-a-platform concept is becoming popular and it is increasingly evident that cities must have efficient management systems capable of deploying, for instance, IoT platforms, open data, etc. and of using artificial intelligence intensively. For many cities, data collection is not a problem, but managing and analysing data with the aim of optimising resources and improving the lives of citizens is. This article presents deepint.net, a platform for capturing, integrating, analysing and creating dashboards, alert systems, optimisation models, etc. This article shows how deepint.net has been used to estimate pedestrian traffic on the streets of Melbourne (Australia) using the XGBoost algorithm. Given the current situation, it is advisable not to transit urban roads when overcrowded, thus, the model proposed in this paper (and imple-mented with deepint.net) facilitates the identification of areas with less pedestrian traffic. This use case is an example of an efficient crowd management system, implemented and operated via a platform that offers many possibilities for the management of the data collected in smart territories and cities

    Deepint.net: A Rapid Deployment Platform for Smart Territories

    No full text
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.POCTEPDCSC/LAPASSION, CITIESDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEpu
    corecore