7 research outputs found

    New Insights into the Metallization of Graphene-Supported Composite Materials-from 3D Cu-Grown Structures to Free-Standing Electrodeposited Porous Ni Foils

    Get PDF
    The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal. Our study reveals that under the same contact current experimental conditions, the electrodeposition of Cu and Ni on rGO follows significantly different deposition modes, resulting in the formation of three-dimensional (3D) and free-standing metallic foils, respectively. Considering that Ni adsorption energy is larger than Ni cohesive energy, it is expected that the adhesion of Ni on rGO@CFRP is enhanced compared to Cu. In contrast, the adhesion of deposited Ni is reduced, suggesting diffusion of H+ between rGO and CFRP, which promotes the hydrogen evolution reaction (HER) and results in the formation of free-standing Ni foils. We ascribe this phenomenon to the unique properties of rGO and the nature of Cu and Ni deposition from electrolytic baths. In the latter, the high adsorption energy of Ni on defective rGO along with HER is the key factor for the formation of the porous layer and free-standing foils. Ā© 2022 The Authors. Published by American Chemical Society

    Electrochemical tuning of capacitive response of graphene oxide

    Get PDF
    Increasing energy demands of modern society requires deep understanding of the properties of energy storage materials as well as their performance tuning. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, combined with cyclic voltammetry measurement and Raman spectroscopy, have shown that upon the reduction GO is irreversibly deoxygenated which is further accompanied with structural ordering and increasing of electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and de-oxygenation leads to the gradual loss of the capacitance. The observed trend is independent on the preparation route and on the exact chemical and structural properties of GO. It is proposed that an improvement of capacitive properties of any GO can be achieved by optimization of its reduction conditions.Comment: 23 pages, 7 figures, 59 reference

    Electrochemical tuning of capacitive response of graphene oxide

    Get PDF
    The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity. The capacitance is maximized when the concentration of oxygen functional groups is properly balanced with the conductivity. Any further reduction and deoxygenation leads to a gradual loss of capacitance. The observed trend is independent of the preparation route and the exact chemical and structural properties of GO. It is proposed that an improvement in the capacitive properties of any GO can be achieved by optimization of its reduction conditions.This is the peer-reviewed version of the following article: Gutić, Sanjin J., Dževad Kozlica, Fehim Korać, Danica Bajuk-Bogdanović, Miodrag Mitrić, Vladimir M. Mirsky, Slavko V. Mentus, and Igor A. PaÅ”ti. "Electrochemical tuning of capacitive response of graphene oxide." (2018). [https://doi.org/10.1039/C8CP03631D]Published version available at: [http://vinar.vin.bg.ac.rs/handle/123456789/7877

    Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications

    No full text
    Graphene synthesized by reduction of graphene oxide, depending on the degree of reduction, retains a certain amount of surface OH groups. Considering the surface OH groups/graphene layer system by means of density functional theory calculations, we evidenced the tendency of OH groups to cluster, resulting in enhanced system stability and no band gap opening. In the oxygen concentration range between 1.8 and 8.47 at%, with the addition of each new OH group, integral binding energy decreases, while differential binding energy shows the boost at even numbers of OH groups. Furthermore, we found that the clustering of OH groups over graphene basal plane plays a crucial role in enhancing the interactions with alkali metals. Namely, if alkali metal atoms interact with individual OH groups only, the interaction leads to an irreversible formation of MOH phase. When alkali atoms interact with clusters containing odd number of OH groups, a reversible transfer of an electron charge from the metal atom to the substrate takes place without OH removal. The strength of the interaction in general increases from Li to K. In an experimental investigation of a graphene sample which dominantly contains OH groups, we have shown that the trend in the specific interaction strength reflects to gravimetric capacitances measured in alkali metal chloride solutions. We propose that the charge stored in OH groups which interact with alkali metal cation and the pi electronic system of the graphene basal plane presents the main part of its pseudocapacitance

    Redrawing HER Volcano with Interfacial Processesā€”The Role of Hydrogen Spillover in Boosting H<sub>2</sub> Evolution in Alkaline Media

    Get PDF
    The requirements for the efficient replacement of fossil fuel, combined with the growing energy crisis, places focus on hydrogen production. Efficient and cost-effective electrocatalysts are needed for H2 production, and novel strategies for their discovery must be developed. Here, we utilized Kinetic Monte Carlo (KMC) simulations to demonstrate that hydrogen evolution reaction (HER) can be boosted via hydrogen spillover to the support when the catalyst surface is largely covered by adsorbed hydrogen under operating conditions. Based on the insights from KMC, we synthesized a series of reduced graphene-oxide-supported catalysts and compared their activities towards HER in alkaline media with that of corresponding pure metals. For Ag, Au, and Zn, the support effect is negative, but for Pt, Pd, Fe, Co, and Ni, the presence of the support enhances HER activity. The HER volcano, constructed using calculated hydrogen binding energies and measured HER activities, shows a positive shift of the strong binding branch. This work demonstrates the possibilities of metalā€“support interface engineering for producing effective HER catalysts and provides general guidelines for choosing novel catalystā€“support combinations for electrocatalytic hydrogen production

    The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water

    No full text
    The wide use of pesticides in modern agriculture and other areas results in an urgent need for their efficient removal from the environment. Adsorption of pesticides is one of the most commonly used strategies for this task. Here we analyze the adsorption of two organophosphorus pesticides, dimethoate (DMT) and chlorpyrifos (CPF), on graphene-based materials. The adsorption was found to be very sensitive to the structure of the adsorbents used. In particular, aliphatic DMT was found to prefer hydrophilic oxidized graphene surfaces. The CPF molecule, which contains an aromatic moiety, prefers adsorption on the surface of a graphene basal plane with high structural order and preserved Ļ€ electron system. The toxicity of pesticide solutions is reduced after adsorption, suggesting that there is no oxidation of DMT and CPF to more toxic oxo forms. We emphasize that the combination of structural properties of adsorbents and adsorbates defines the adsorption of organophosphorus pesticides on graphene-based materials, while the specific surface area of adsorbents is not the major factor
    corecore