4 research outputs found

    X‐ray computed tomography and its potential in ecological research: A review of studies and optimization of specimen preparation

    Full text link
    Imaging techniques are a cornerstone of contemporary biology. Over the last decades, advances in microscale imaging techniques have allowed fascinating new insights into cell and tissue morphology and internal anatomy of organisms across kingdoms. However, most studies so far provided snapshots of given reference taxa, describing organs and tissues under “idealized” conditions. Surprisingly, there is an almost complete lack of studies investigating how an organism′s internal morphology changes in response to environmental drivers. Consequently, ecology as a scientific discipline has so far almost neglected the possibilities arising from modern microscale imaging techniques. Here, we provide an overview of recent developments of X-ray computed tomography as an affordable, simple method of high spatial resolution, allowing insights into three-dimensional anatomy both in vivo and ex vivo. We review ecological studies using this technique to investigate the three-dimensional internal structure of organisms. In addition, we provide practical comparisons between different preparation techniques for maximum contrast and tissue differentiation. In particular, we consider the novel modality of phase contrast by self-interference of the X-ray wave behind an object (i.e., phase contrast by free space propagation). Using the cricket Acheta domesticus (L.) as model organism, we found that the combination of FAE fixative and iodine staining provided the best results across different tissues. The drying technique also affected contrast and prevented artifacts in specific cases. Overall, we found that for the interests of ecological studies, X-ray computed tomography is useful when the tissue or structure of interest has sufficient contrast that allows for an automatic or semiautomatic segmentation. In particular, we show that reconstruction schemes which exploit phase contrast can yield enhanced image quality. Combined with suitable specimen preparation and automated analysis, X-ray CT can therefore become a promising quantitative 3D imaging technique to study organisms′ responses to environmental drivers, in both ecology and evolution.</p

    Diet composition and social environment determine food consumption, phenotype and fecundity in an omnivorous insect

    Full text link
    Nutrition is the single most important factor for individual's growth and reproduction. Consequently, the inability to reach the nutritional optimum imposes severe consequences for animal fitness. Yet, under natural conditions, organisms may face a mixture of stressors that can modulate the effects of nutritional asymmetry. For instance, stressful environments caused by intense interaction with conspecifics. Here, we subjected the house cricket Acheta domesticus to (i) either of two types of diet that have proved to affect cricket performance and (ii) simultaneously manipulated their social environment throughout their complete life cycle. We aimed to track sex-specific consequences for multiple traits during insect development throughout all life stages. Both factors affected critical life-history traits with potential population-level consequences: diet composition induced strong effects on insect development time, lifespan and fitness, while the social environment affected the number of nymphs that completed development, food consumption and whole-body lipid content. Additionally, both factors interactively determined female body mass. Our results highlight that insects may acquire and invest resources in a different manner when subjected to an intense interaction with conspecifics or when isolated. Furthermore, while only diet composition affected individual reproductive output, the social environment would determine the number of reproductive females, thus indirectly influencing population performance
    corecore