11 research outputs found

    New potent DOT1L inhibitors for in vivo evaluation in mouse

    No full text
    In MLL-rearranged cancer cells, disruptor of telomeric silencing 1-like protein (DOT1L) is aberrantly recruited to ectop-ic loci leading to local hypermethylation of H3K79 and consequently misexpression of leukemogenic genes. A struc-ture-guided optimization of a HTS hit led to the discovery of DOT1L inhibitors with subnanomolar potency, allowing to test the therapeutic principle of DOT1L inhibition in a preclinical mouse tumor xenograft model. Compounds dis-playing good exposure in mouse and nanomolar inhibition of target gene expression in cell were obtained and tested in viv

    Multiuser MIMO: Principle, Performance in Measured Channels and Applicable Service

    Get PDF
    Abstract—The exploitation of multiuser diversity and the application of multiple antennas at transmitter and receiver are considered to be key technologies for future highly bandwidthefficient wireless systems. We combine both ideas in a downlink multicarrier transmission scheme where multiple users compete for the available resources in time, frequency and space. The instantaneous channel impulse responses for all users are assumed to be perfectly known at the transmitter. Our proposed algorithm allocates each spatial dimension on a subcarrier to the user which has the highest channel tap gain on the respective spatial dimension. The scheduling strategy is optimized for sum capacity maximization. In this paper, we restrict ourselves to a more illustrative description of the idea rather then providing mathematical details. We demonstrate the potential of the proposed scheme by capacity results for measured real world channels in a large office environment. Finally, video streaming is used as a potential application with high data rate and low latency demands. It is shown that the proposed method has the potential to exploit multiuser diversity while still providing stable video streams even though QoS constraints are not explicitly taken into account by the scheduler

    Identification and optimisation of 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole and 4,5-dihydrothiazolo[4,5-h]quinazoline series of selective phosphatidylinositol-3 kinase alpha inhibitors

    No full text
    Abstract: A cyclisation within a 4',5-bisthiazole (S)-proline-amide-urea series of selective PI3Kα inhibitors led to a novel 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole tricyclic sub-series. The synthesis and optimisation of this 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole sub-series and the expansion to a related tricyclic 4,5-dihydrothiazolo[4,5-h]quinazoline sub-series are described. From this work analogues inclusing 11, 12, 19 and 23 were identified as potent and selective PI3Kα inhibitor in vivo tool compounds

    Identification of NVP-CLR457 as an Orally Bioavailable Non-CNS-Penetrant pan-Class IA Phosphoinositol-3-Kinase Inhibitor.

    No full text
    Balanced pan-class I phosphoinositide 3-kinase inhibition as an approach to cancer treatment offers the prospect of treating a broad range of tumor types and/or a way to achieve greater efficacy with a single inhibitor. Taking buparlisib as the starting point, the balanced pan-class I PI3K inhibitor 40 (NVP-CLR457) was identified with what was considered to be a best-in-class profile. Key to the optimization to achieve this profile was eliminating a microtubule stabilizing off-target activity, balancing the pan-class I PI3K inhibition profile, minimizing CNS penetration, and developing an amorphous solid dispersion formulation. A rationale for the poor tolerability profile of 40 in a clinical study is discussed

    Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition

    No full text
    The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kβ inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kβ inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kβ, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kβ + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response

    Identification and characterization of NVP-BKM120, an orally available pan class I PI3-Kinase inhibitor

    No full text
    The PI3K/Akt/mTor signaling pathway plays an important role in controlling cell growth, proliferation and survival. Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional PI3K inhibitors from different chemical classes with more stringent selectivity profiles. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacological evaluation of selected compounds during the medicinal chemistry optimization process. Here we report on the biological characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four Class I PI3K isoforms in biochemical assays with at least 50-fold selectivity (relative to p110) against other protein kinases. The compound is also active against the most common somatic PI3K mutations but does not significantly inhibit the related Class III (Vps34) and Class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration dependent and pathway specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. Moreover, NVP-BKM120 demonstrates synergistic advantages when combined with either targeted therapy agents such as MEK or HER2 inhibitors or with cytotoxic agents such as Docetaxel or Temozolomide. The pharmacological, biological and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is currently undergoing Phase II clinical trials in cancer patients
    corecore